Skip to main content

Covalent Cross-Linking of Primary Cell Wall Pectic Polysaccharides is Required for Normal Plant Growth

  • Chapter
Advances in Pectin and Pectinase Research

Abstract

Rhamnogalacturonan II (RG-II) is a structurally complex pectic polysaccharide that is present in the primary walls of all higher plant cells. Recent research has revealed much about the structure and function of RG-II. RG-II exists in the wall predominantly as a dimer that is cross-linked by a 1:2 borate diol ester. The formation of the RG-II dimer in muro is proposed to generate a covalently cross-linked pectic network that contributes to the physical and biochemical properties of the wall. We have investigated the function of this pectic network using a dwarf Arabidopsis mutant (mur1) that synthesizes RG-II with an altered glycosyl residue composition and a dwarf Arabidopsis mutant (bor1) that is defective in root-to-shoot translocation of boron. The walls of these mutants contain reduced amounts of the RG-II dimer. The amounts of borate cross-linked RG-II in the walls and morphology of mur1 and bor1 plants sprayed with boric acid are comparable to wild-type plants. Our study demonstrates a major role for borate cross-linking of primary wall pectic polysaccharides in plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Warrington, K.: The effect of boric acid and borax on the broad bean and certain other plants, Ann. Bot. 37 (1923), 629–672.

    Google Scholar 

  2. Sommer, A.L., and Lipman, C.B.: Evidence on the indispensable nature of zinc and boron for higher green plants, Plant Physiol. 1 (1926), 231–249.

    Article  PubMed  CAS  Google Scholar 

  3. Schmucker, T.: Zur Blütenbiologie tropischer nymphea-arten. II. Bor als entscheidender Faktor,Planta 18 (1933), 641–650.

    Article  CAS  Google Scholar 

  4. Smith, M.E.: The role of boron in plant metabolism. 1. Boron in relation to the absorption and solubility of calcium, Aust J. Exp. Biol. Med. Sci. 22 (1944), 257–263.

    Article  CAS  Google Scholar 

  5. Yamauchi, T., Hara, T., and Sonoda, Y.: Distribution of calcium and boron in the pectic fraction of tomato leaf cell wall, Plant Cell Physiol. 27 (1986), 729–732.

    CAS  Google Scholar 

  6. Loomis, W.D., and Durst, R.W.: Chemistry and biology of boron, BioFactors 3 (1992), 229–239.

    PubMed  CAS  Google Scholar 

  7. Hu, H., and Brown, P.H.: Localization of boron in cell walls of squash and tobacco and its association with pectin. Evidence for a structural role of boron in the cell wall, Plant Physiol. 105 (1994), 681–689

    PubMed  CAS  Google Scholar 

  8. Hu, H., Brown, P.H., and Labavitch, J.M.: Species variability in boron requirement is correlated with cell wall pectin, J. Exp. Bot. 47 (1996), 227–232.

    Article  CAS  Google Scholar 

  9. Matoh, T., Kawaguchi, S., and Kobayashi, M.: Ubiquity of a borate-rhamnogalacturonan II complex in the cell walls of higher plants, Plant Cell Physiol. 37 (1996), 636–640.

    Article  CAS  Google Scholar 

  10. Kobayashi, M., Matoh, T., and Azuma, J.: Structure and glycosyl composition of the boronpolysaccharide complex of radish roots, Plant Cell Physiol. 36S (1995), 139.

    Google Scholar 

  11. Kobayashi, M., Matoh, T., and Azuma, J.: Two chains of rhamnogalacturonan II are cross-linked by borate-ester bonds in higher plant cell walls, Plant Physiol. 110 (1996), 1017–1020.

    PubMed  CAS  Google Scholar 

  12. O’Neill, M.A., Warrenfeltz, D., Kates, K., Pellerin, P., Doco, T., Darvill, A.G., and Albersheim, P.: Rhamnogalacturonan-II, a pectic polysaccharide in the walls of growing plant cells, forms a dimer that is covalently cross-linked by a borate ester, J. Biol. Chem. 217 (1996), 22923–22930.

    Google Scholar 

  13. Ishii, T., Matsunaga, T., Pellerin, P., O’Neill, M.A., Darvill, A.G., and Albersheim, P.: The plant cell wall polysaccharide rhamnogalacturonan II self-assembles into a covalently cross-linked dimer, J. Biol. Chem. 274 (1999) 13098–13104.

    Article  PubMed  CAS  Google Scholar 

  14. Fleischer, A., O’Neill, M.A., and Ehwald, R.: The pore size of non-graminaceous plants is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II, Plant Physiol. 121 (1999), 829–838.

    Article  PubMed  CAS  Google Scholar 

  15. Ishii, T. and Matsunaga, T.: Pectic polysaccharide rhamnogalacturonan II is covalently linked to homogalacturonan, Phytochemistry 57 (2001), 969–974.

    Article  PubMed  CAS  Google Scholar 

  16. Fleischer, A., Titel, A., and Ehwald, R.: The boron requirement and cell wall properties of growing- and stationary-phase suspension-cultured Chenopodium album L. cells, Plant Physiol 117 (1997), 1401–1410.

    Article  Google Scholar 

  17. Ishii, T., Matsunaga, T., and Hayashi, N.: Formation of rhamnogalacturonan II-borate dimer in pectin determines cell wall thickness of pumpkin tissue, Plant Physiol. 126 (2001), 1698–1705.

    Article  PubMed  CAS  Google Scholar 

  18. Brown, P.H., and Hu, H.: Does boron play only a structural role in the growing tissues of higher plants? Plant Soil196 (1997), 211–215.

    Article  CAS  Google Scholar 

  19. Matoh, T., and Kobayashi, M.: Boron and calcium, essential inorganic constituents of pectic polysaccharides in higher plant cell walls, J. Plant Res. 111 (1998), 179–190.

    Article  CAS  Google Scholar 

  20. Reiter, W.D., Chapple, C.C.S., and Somerville, C.R.: Altered growth and cell walls in a fucose-deficient mutant of Arabidopsis, Science 261 (1993), 1032–1035.

    CAS  Google Scholar 

  21. Reiter, W.D., Chapple, C.C.S., and Somerville, C.R.: Mutants of Arabidopsis thaliana with altered cell wall polysaccharide composition, Plant J. 12 (1997), 335–345.

    Article  PubMed  CAS  Google Scholar 

  22. Bonin C.P., Potter, I., Vanzin, G.F., and Reiter, W.D.: The MUR1 gene of Arabidopsis thaliana encodes an isoform of GDP-mannose-4,6-dehydratase, catalyzing the first step in the de novo synthesis of GDPL-fucose, Proc. Natl. Acad. Sci. USA, 94 (1997), 2085–2090.

    Article  PubMed  CAS  Google Scholar 

  23. Bonin, C.P. and Reiter, W.D.: A bifunctional epimerase-reductase acts downstream of the MUR1 gene product and completes the de novo synthesis of GDP-L-fucose in Arabidopsis, Plant J. 21, (2000), 445–454.

    Article  PubMed  CAS  Google Scholar 

  24. Smirnoff, N., Conklin, P.L., and Loewus, F.A.: Biosynthesis of ascorbic acid in plants. A renaissance, Ann. Rev. Plant Physiol. Plant Mol. Biol. 52 (2001), 437–467.

    Article  CAS  Google Scholar 

  25. Zablackis, E., Huang, J., Muller, B., Darvill, A.G., and Albersheim, P.: Characterization of the cell-wall polysaccharides of Arabidopsis thaliana leaves, Plant Physiol. 107 (1995), 1129–1136.

    Article  PubMed  CAS  Google Scholar 

  26. Rayon, C., Cabanes-Macheteau, M., Loutelier-Bourhis, C., Salliot-Maire, I., Lemoine, J., Reiter, W.D., Lerouge, P., and Faye, L.: Characterization of N-glycans from Arabidopsis. Application to a fucosedeficient mutant. Plant Physiol. 119 (1999), 725–734.

    Article  PubMed  CAS  Google Scholar 

  27. Reiter W.D.: Arabidopsis thaliana as a model system to study synthesis, structure, and function of the plant cell wall, Plant Physiol. Biochem. 36 (1998) 167–176.

    Article  CAS  Google Scholar 

  28. Perrin, R.M., DeRocher, A.E., Bar-Peled, M., Zeng, W.Q., Norambuena, L., Orellana, A., Raikhel, N.V., and Keegstra, K.: Xyloglucan fucosyltransferase, an enzyme involved in plant cell wall biosynthesis, Science 284 (1999), 1976–1979.

    Article  PubMed  CAS  Google Scholar 

  29. Vanzin, G.F., Madson, M., Carpita, N.C., Raikhel, N.V., Keegstra, K., and Reiter, W.D.: The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan due to a lesion in fucosyltransferase AtFT1. Submitted for publication.

    Google Scholar 

  30. von Schaewen, A., Sturm, A. O’Neill, J., Chrispeels, M.J. Isolation of a mutant Arabidopsis plant that lacks N-acetyl glucosaminyl transferase I and is unable to synthesize Golgi-modified complex N-linked glycans, Plant Physiol. 102, (1993), 1109–1118.

    Article  Google Scholar 

  31. O’Neill, M.A., Eberhard, S., Albersheim, P., and Darvill, A.G.: Arabidopsis growth requires borate cross-linking of the cell wall pectic polysaccharide rhamnogalacturonan II, Science 294 (2001), 846–849.

    Article  PubMed  Google Scholar 

  32. Reuhs, B., Stephens, S., Kim, J., O’Neill, M.A., Albersheim, P., and Darvill, A.G.: L-galactosyl residues replace L-fucosyl residues in the rhamnogalacturonan II synthesized by the Arabidopsis mur1 mutant. Manuscript in prenaration.

    Google Scholar 

  33. Noguchi, K., Yasumori, M., Imai, T., Naito, S., Matsunaga, T., Oda, H., Hayashi, H., Chino, M., and Fujiwara, T, bor1–1, an Arabidopsis thaliana mutant that requires a high level of boron, Plant Physiol. 115 (1997), 901–906.

    Article  PubMed  CAS  Google Scholar 

  34. Takano, J., Yamagami, M., Noguchi, K., Hayashi, H., and Fujiwara, T, Preferential translocation of boron to young leaves in Arabidopsis thaliana regulated by the BORI gene, Soil Sci. Plant Nutr. 47 (2001). 345–357.

    Article  CAS  Google Scholar 

  35. Dell, B and Huang, L.: Physiological response of plants to low boron, Plant Soil 193 (1997), 103–120.

    Article  CAS  Google Scholar 

  36. Kohorn, B.: Plasma membrane-cell wall contacts, Plant Physiol. 124 (2000), 31–38.

    Article  PubMed  CAS  Google Scholar 

  37. He, Z.H., Fujiki, M., and Kohorn, B.: A cell-wall associated, receptor-like kinase, J. Biol. Chem. 271 (1996), 19789–19793.

    Article  PubMed  CAS  Google Scholar 

  38. Wagner, T.A., and Kohorn, B.: Wall-associated kinases are expressed throughout plant development and are reauired for cell expansion, Plant Cell 13 (2001), 303–318.

    PubMed  CAS  Google Scholar 

  39. Lally, D., Ingmire, P., Tong, H.Y., and He, Z.H.: Antisense expression of a cell wall-associated protein kinase. WAK4, inhibits cell elongation and alters morphology, Plant Cell 13 (2001), 1317–1331.

    PubMed  CAS  Google Scholar 

  40. Chen, C.S., Mrksich, M., Huang, S., Whitesides, G.M., and Ingber, D.E.: Geometric control of cell life and death, Science 276 (1997), 1425–1428.

    Article  PubMed  CAS  Google Scholar 

  41. Walker, R.G., Willingham, A.T., and Zuker, C.S.: A Drosophila mechanosensory transduction channel, Science 287 (2000), 2229–2234.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. O’Neill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

O’Neill, M.A. et al. (2003). Covalent Cross-Linking of Primary Cell Wall Pectic Polysaccharides is Required for Normal Plant Growth. In: Voragen, F., Schols, H., Visser, R. (eds) Advances in Pectin and Pectinase Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0331-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0331-4_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6229-1

  • Online ISBN: 978-94-017-0331-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics