Skip to main content

Modeling Aerosol Drug Delivery

  • Conference paper
Optimization of Aerosol Drug Delivery

Abstract

Delivery of a therapeutic agent by inhalation has seen increasing applications for many respiratory diseases, including asthma, COPD, and allergies. Aerosol delivery has advantages: it delivers medication directly to where it is needed, and it avoids the first-pass effect with minimum reduction of bioavailability. More recently, the inhalation route has been extensively researched as an alternative for systematic administration of proteins and peptides because of the large surface area in the pulmonary region and rapid absorption of the delivered drug from the alveolar region to the blood. Aerosol delivery is non-invasive and is effective in much lower doses than required for oral administration. Currently, there are several types of therapeutical aerosol delivery systems, including the pressurized metered dose inhaler (pMDI), the dry powder inhaler (DPI), the medical nebulizer, the solution mist inhaler, and nasal sprays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agnew, J. E. (1991). Characterizing lung aerosol penetration. J. Aerosol Med. 4:237–249.

    Article  Google Scholar 

  • Barry, P. W., and C. O’Callaghan (1999). In vitro analysis of the output of salbutamol from different nebulizers. Eur. Respir. J. 1130:1164–1169.

    Article  Google Scholar 

  • Borgstrom, L., E. Bondesson, F. Moren, E. Trofast, and S. P. Newman (1994). Lung deposition of budesonide inhaled via Turbuhaler: A comparison with terbutaline sulphate in normal subjects. Eur. Respir. J. 7: 69–73.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, Y. S., C. Fu, D. Yazzie, and Y. Zhou (2001a). Respiratory deposition patterns of salbutamol PMDI with CFC and HFA-134a formulations in a human airway replica. J. Aerosol Med. 14:255 – 266.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, Y. S., T. D. Holmes, J. Gao, R. A. Guilmette, S. Li, Y. Surakitbanharn, and C. Rowlings (2001b). Characterization of nasal spray pumps and deposition pattern in a replica of the human nasal airway. J. Aerosol Med. 14:267–270.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, Y. S., D. Yazzie, J. Gao, D. Muggli, J. Etter, and D. E. Rosner (in press). Particle characterization and lung deposition patterns of a dry powder formulation of polylactic acid produced using supercritical fluid technology. J. Aerosol Med.

    Google Scholar 

  • Clark, A. R. (1991). In vitro assessment of spacers and reservoir devices. In Respiratory Drug Delivery II (P. Byron, ed.), pp. 27–31, Boca Raton, FL: CRC Press.

    Google Scholar 

  • Clark, A. R. (1995). The use of laser diffraction for the evaluation of the aerosol clouds generated by medical nebulizers. Int. J. Pharm. 115:69–78.

    Article  Google Scholar 

  • Clark, A. R. (1996). MDI: Physics of aerosol formation. J. Aerosol Med. 9:S19–S26.

    Article  Google Scholar 

  • Clark, A. R., S. P. Newman, and N. Dasovich (1998). Mouth and oropharyngeal deposition of pharmaceutical aerosols. J. Aerosol Med. 11 : S116–S121.

    Google Scholar 

  • Derom, E., and R. Pauwels (1998). Relationship between airway deposition and effects for inhaled bronchodilators. In Respiratory Drug Delivery VI (R. Dalby, P. R. Byron, and S. J. Farr, eds.), pp. 35–44, Buffalo Grove, IL: Interpharm Press.

    Google Scholar 

  • Dolovich, M. (1989). Physical principles underlying aerosol therapy. J. Aerosol Med. 2:171–186.

    Article  Google Scholar 

  • Dolovich, M., and R. Rhem (1998). Impact of oropharyngeal deposition on inhaled dose. J. Aerosol Med. 11:S112–S115.

    Google Scholar 

  • Hardy, J. G., S. P. Newman, and M. Knoch (1993). Lung deposition from four nebulizers. Respir. Med. 87:461–465.

    Article  PubMed  CAS  Google Scholar 

  • Hickey, A. J., T. B. Martonen, and Y. Yang (1996). Theoretical relationship of lung deposition to the fine particle fraction of inhalation aerosols. Pharm. Acta Helv. 71:185–190.

    Article  PubMed  CAS  Google Scholar 

  • Hirst, P. H., G. R. Pitcaim, J. G. Weers, T. E. Tarara, A. R. Clark, L. A. Dellamary, G. Hall, J. Shorr, and S. P. Newman (2002). In vivo lung deposition of hollow porous particles from a pressurized metered dose inhaler. Pharmacol. Res.19: 258–264.

    Article  CAS  Google Scholar 

  • ICRP (1994). Human Respiratory Tract Model for Radiological Protection, Publication 66, Annals of ICRP. London, UK: Pergamon.

    Google Scholar 

  • Knoch, M., E. Wunderlich, and S. Geldner (1994). A nebulizer system for highly reproducible aerosol delivery. J. Aerosol Med. 7:229–237.

    Article  PubMed  CAS  Google Scholar 

  • Leach, C. L., P. J. Davidson, and A. Bouhuys (1998). Improved airway targeting with the CFC-free HFA- beclomethasone metered-dose inhaler compared with CFC-beclomethasone. Eur. Respir. J. 12:1346 – 1353.

    Article  PubMed  CAS  Google Scholar 

  • Marple, V. A., B. A. Olson, and N. C. Miller (1998). The role of inertial particle collectors in evaluating pharmaceutical aerosol delivery systems. J. Aerosol Med. 1:S139–S153.

    Google Scholar 

  • Martonen, T. B. (1993). Mathematical model for the selective deposition of inhaled pharmaceuticals. J. Pharm. Sci. 82:1191–1199.

    Article  PubMed  CAS  Google Scholar 

  • NCRP (1997). Deposition, Retention, and Dosimetry of Inhaled Radioactive Substances. NCRP Report No. 125, Bethesda, MD: National Council on Radiation Protection and Measurements.

    Google Scholar 

  • Nerbrink, O., M. Dahlback, and H. C. Hansson (1994). Why do medical nebulizers differ in their output and particle size characteristics? J. Aerosol Med. 7: 259–276.

    Article  PubMed  CAS  Google Scholar 

  • Newman, S. P. (1998). How well do in vitro particle size measurements predict drug delivery in vivo? J. Aerosol Med. 11 :S97–S104.

    Google Scholar 

  • Newman, S. P., F. Moren, and S. W. Clarke (1987a). Deposition pattern of nasal sprays in man. Rhinology 26:111–120.

    Google Scholar 

  • Newman, S. P., F. Moren, and S. W. Charles (1987b). The nasal distribution of metered dose inhalers. J. Laryngol. Otol. 101:127–132.

    Article  PubMed  CAS  Google Scholar 

  • Newman, S. P., F. Moren, E. Trofast, N. Talaee, and S. W. Clarke (1989a). Deposition and clinical efficiency of terbutaline sulphate from Turbuhaler, a new multi-dose powder inhaler. Eur. Respir. J. 2:247–252.

    PubMed  CAS  Google Scholar 

  • Newman, S. P., A. R. Clark, N. Talaee, and S. W. Clarke (1989b). Pressurized aerosol deposition in the human lung with and without an “open” spacer device. Thorax 44:706–710.

    Article  PubMed  CAS  Google Scholar 

  • Newman, S. P., A. R. Clark, N. Talaee, and S. W. Clarke (1991). Lung deposition of 5 mg Intal from a pressurized metered dose inhaler assessed by radiotracer technique. Int. J. Pharm. 74:203–208.

    Article  CAS  Google Scholar 

  • Newman, S. P., G. Pitcairn, G. Hooper, and M. Knoch (1994). Efficient drug delivery to the lungs from a continuously operated open-vent nebulizer and low pressure compressor system. Eur. Respir. J. 7:1177–1181.

    PubMed  CAS  Google Scholar 

  • Newman, S. P., I. R. Wilding, and P. H. Hirst (2000). Human lung deposition data: The bridge between in vitro and clinical evaluation for inhaled drug products. Int. J. Pharm. 208:49–60.

    Article  PubMed  CAS  Google Scholar 

  • Newman, S. P., G. Pitcairn, D. A. Adkin, M. T. Vidgren, and M. Silvasti (2001). Comparison of beclomethasone dipropionate delivery by Easyhaler dry powder inhaler and PMDI plus large volume spacer. J. Aerosol Med. 14:217–225.

    Article  PubMed  CAS  Google Scholar 

  • Nichols, S. C., D. R. Brown, and M. Smurthwaite (1998). New concepts for the variable flow rate Andersen cascade impactor and calibration data. J. Aerosol Med. 11 :S133—S138.

    Article  Google Scholar 

  • Phalen R. F., W. C. Hinds, W. John, P. J. Lioy, M. Lippmann, M. A. McCawley, and O. G. Raabe (1986). Rationale and recommendations for particle size-selective sampling in the workplace. Appl. Ind. Hyg. 1:3–14.

    Article  CAS  Google Scholar 

  • Pitcairn, G., G. Lunghetti, P. Ventura, and S. Newman (1994). A comparison of the lung deposition of salbutamol inhaled from a new dry powder inhaler at two inhaled flow rates. Int. J. Pharm. 102:11–18.

    Article  CAS  Google Scholar 

  • Pitcairn, G. R., T. Lankinen, E. Valkila, and S. P. Newman (1995). Lung deposition of salbutamol inhaled from the Leiras metered dose powder inhaler. J. Aerosol Med. 8:307–311.

    Article  Google Scholar 

  • Price, A. (2000). Validation of aerosol deposition models for pharmaceutical purposes: The way forward. In Respiratory Drug Delivery VII, pp. 197–208, Buffalo Grove, IL: Interpharm Press.

    Google Scholar 

  • Pritchard, J. N., G. R. Layzell, and J. F. Miller (1996). Correlation of cascade impactor data with measurements of lung deposition for pharmaceutical aerosols. In Drug Delivery to the Lungs VII, pp. 101–104, London: The Aerosol Society.

    Google Scholar 

  • Richards, J., P. Hirst, G. Pitcairn, S. Mahashbde, W. Abramowitz, A. Nolting, and S. P. Newman (2001). Deposition and pharmacokinetics of flunisolide delivered from pressurized inhalers containing non- CFC and CFC propellants. J. Aerosol Med. 14:197–208.

    Article  PubMed  CAS  Google Scholar 

  • Soderholm, S. C. (1989). Proposed international standard for particle size-selective sampling. Ann. Occup. Hyg.33: 301–320.

    Article  PubMed  CAS  Google Scholar 

  • Sterk, P. J., A. Plomp, J. F. Van de Vate, and P. H. Quanjer (1984). Physical properties of aerosols produced by several jet and ultrasonic nebulizers. Bull. Eur. Physiopathol. Respir. 20: 65–72.

    PubMed  CAS  Google Scholar 

  • Thorsson, L., S. P. Newman, A. Weisz, E. Trofast, and F. Moren (1993). Nasal distribution of budesonide inhaled via a powder inhaler. Rhinology 31:7–10.

    PubMed  CAS  Google Scholar 

  • Vera, P., F. Blot, D. J. Gambini, M. H. Becquemin, F. Dumas, P. Beyne, I. Caubarrere, and L. Barritault (1995). Comparison of jet and ultrasonic nebulizers for alveolar targeting of methylprednisolone. Nucl. Med. Commun. 16:344–348.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Cheng, Y.S. (2003). Modeling Aerosol Drug Delivery. In: Gradoń, L., Marijnissen, J. (eds) Optimization of Aerosol Drug Delivery. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0267-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0267-6_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6436-3

  • Online ISBN: 978-94-017-0267-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics