Skip to main content

Biological Utilization of Carbon Dioxide: The Marine Biomass Option

  • Chapter
Carbon Dioxide Recovery and Utilization

Abstract

The carbon based fuels produce 80% of the energy used worldwide and emit 22 billion t (22 E*9 t) per year of CO2, or 6 E*9 t of carbon. Despite the natural carbon cycle uses a quantity of carbon close to 200 E*9 t per year, it cannot recycle all the carbon emitted by anthropic activities that represents only 3% of the total amount. As a matter of fact, the rate of fossil carbon formation is over 100 000 times slower than the rate of fossil carbon consumption and this makes the fossil fuels a “non renewable” source of energy. Carbon dioxide, a green-house gas, is steadily increasing its concentration into the atmosphere since 200 years, rising serious concerns about the effects on global warming and climate change, should higher limits be reached in next two decades. The utilization of biomass represents an environmentally and economically feasible alternative to fossil fuels, moving a step towards the “zero emission” option. As a matter of fact, the forecast is that biomass may contribute to the global energy balance with a share of more than 10% by 2050, [1] with a fivefold increase with respect to the actual 2%. Such expansion of the market would be possible if biomass for energy were specifically grown and used in addition to the limited amount of terrestrial or residual biomass used today as energy source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aresta, M., Dibenedetto A, Tommasi I.“Developing Innovative Synthetic Technologies of Industrial Relevance based on Carbon Dioxide as Raw material” Energy&Fuels, 15, 2, 269–273, 2001.

    CAS  Google Scholar 

  2. Wilde, E.W., Benemann, J.R. “Bioremoval of heavy metals by the use of microalgae”, Biotechnology Advances, 11, 781–81, 1993;

    Article  CAS  Google Scholar 

  3. Kadam, K.L. “Power plant flue gas as a source of CO2 for microalgae cultivation: economic impact of different process options” Energy Convers. Mgmt., 38, PS 505–510, 1997.

    Article  Google Scholar 

  4. Gao, K., McKinley, K.R. “Use of macroalgae for marine biomass production and CO2 remediation: a review” J. Appl. Phycol., 6, 45–60, 1994.

    Article  Google Scholar 

  5. Aresta, M., Dibenedetto, A., Tommasi, I., Cecere, E., Narracci, M., Petrocelli, A., Perrone, C. “The use of marine biomass as renewable energy source for reducing CO2 emissions”, Elsevier 2002, Special Issue Dedicated to GHGT-6, Kyoto, October 2002.

    Google Scholar 

  6. Ono, E., Cuello, J.L. “Design Parameters of Solar Concentrating Systems for Algae-Based CO2-Emission Mitigation”, Elsevier 2002, Special Issue Dedicated to GHGT-6, Kyoto, October 2002.

    Google Scholar 

  7. Zeiler, K.G., Heacox, D.A., Toon, S.T., Kadam, K.L., Brown, L.M. “The use of microalgae for assimilation and utilization of carbon dioxide from fossil fuel-fired power lant flue gas” Energy Convers. Mgmt., 36, 707–712, 1995.

    Article  CAS  Google Scholar 

  8. Ryther, J.H., DeBoer, J.A.,. Lapointe, B.E “Cultivation of seaweeds for hydrocolloids, waste treatment and biomass for energy conversion” Proceedings International Seaweed Symposium, 9, 1–16, 1979.

    Google Scholar 

  9. Schramm, W. “Seaweed for waste water treatment and recycling of nutrients” in Guiry M.D., and Blunden, G. Eds “Seawed Resources in Europe: Uses and Potential”, John Wiley & Sons, Chichester, p. 149–168, 1991.

    Google Scholar 

  10. Cohen, I., Neori, A. “Ulva lactuca biofilters for marine fishpond effluents I. Ammonia uptake kinetics and nitrogen content” Bot. Mar., 34, 977–984, 1991.

    Article  Google Scholar 

  11. Hirata, H., Xu, B. “Effects of feed addictive Ulva produced in feedback culture system on the growth and color of Red Sea Bream. Pagure major” Sui Sanzoshoku, 38, 177–182, 1990.

    Google Scholar 

  12. Sauze, F. Increasing the productivity of macroalgae by the action of a variety of factors. in Stub, A., Chartier, A., Schleser, P., Schleser, G. Eds, “Energy from Biomass”, Elsevier Applied Science, London, 324–328, 1983.

    Google Scholar 

  13. Brown, D.L., Tregunna, E.B. “Inhibition of respiration during photosynthesis by some algae” Can. J. Bot., 45, 1135–1143, 1967.

    Article  Google Scholar 

  14. Smith, R.G., Bidwell, R.G.S. “Carbonic anhydrase-dependent inorganic carbon uptake by the red macroalga Chondru crispus” Plant Physiol., 83, 735–738, 1987.

    Article  CAS  Google Scholar 

  15. Gao, K., Aruga, Y., Asada, K., Kiyohara, M. “Influence of enhanced CO2 on grand photosynthesis of he red algae Gracilaria sp. And G. chilensis” J. Appl. Phycol., 5, 563–571, 1993.

    Article  CAS  Google Scholar 

  16. Benemann, J.R., Oswald, W.J. “Systems and Economic Analysis of Microalgae Ponds for Conversion of CO2 to Biomass”, Final Report, Pittsburg Energy Technology Center, 1996, p. 260.

    Book  Google Scholar 

  17. Hase, R., Oikawa, H., Sasao, C., Morita, M., Watanabe, Y. J. “Photosynthetic production of microalgal biomass in a raceway system under greenhouse condition in Sendai City” Bioscience & Bioengineering 89(2), 157–163, 2000.

    Article  CAS  Google Scholar 

  18. Nagase, H., Yoshihara, K., Okamoto, Y., Murasaki, S., Yamashita, R., Hirata, K., Miyamoto, K. “Uptake pathway and continuous removal of nitric oxide from flue gas using microalgae” Biochem. Eng. J., 7, 241–246, 2001.

    Article  CAS  Google Scholar 

  19. Nakaj ima, Y., Tsuzuki, M., Ueda, R. “Improved productivity by reduction of the content of light-harvesting pigment in Chlamydomonas perigranulata” J. Appl. Phycol., 13, 95–101, 2001.

    Article  CAS  Google Scholar 

  20. Ikuta, Y., Akano, T., Shioji, N., Maeda, I., in “Biohydrogen”, Zaborsky O. Ed., Plenum Press., New York, 1998, p. 319–328.

    Google Scholar 

  21. Weissman, J.C., Goebel, R.P. “Design and Analysis of Pond Systems for the Purpose of Liquid Fules”, Solar Energy Res. Inst., Golden CO, SERI/STR-231–2840, Final Report, 1997.

    Google Scholar 

  22. FAO “Training manual on Gracilaria Culture and Seawood Processing in China”, in Training manual, 6, 2–46, 1990.

    Google Scholar 

  23. Bird, K.T. “Cost analysis of energy from marine biomass” in Bird, K.T., Benson, P.H. Eds., “Seaweed Cultivation for Renewable Resources”, Elsevier, Amsterdam, 327–350, 1987.

    Google Scholar 

  24. Cheung, P.C.K. “Temperature and pressure effects on supercritical carbon dioxide extraction of n-3 fatty acids from red seaweed” Food Chemistry, 65, 399–403, 1999.

    Article  CAS  Google Scholar 

  25. Wahbeh, M.I. “Amino acid and fatty acid profiles of four species of macroalgae from Aqaba and their suitability for use in fish diets” Aquaculture, 159, 101–109, 1997.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dibenedetto, A., Tommasi, I. (2003). Biological Utilization of Carbon Dioxide: The Marine Biomass Option. In: Aresta, M. (eds) Carbon Dioxide Recovery and Utilization. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0245-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0245-4_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6335-9

  • Online ISBN: 978-94-017-0245-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics