Skip to main content
  • 340 Accesses

Abstract

Recently, neuroscientists, psychologists and pedagogues work on cognition, learning and teaching involving instructional technologies, each of them from their own point of view, towards a biological basis of learning.

This paper proposes the exploitation of neuropsychological methods and non-invasive imaging techniques for the study of mental conditions and especially of cognitive tasks in technologically enriched educational environments for science learning. It proposes the study of brain waves coming from different areas of the cortex and their spectral analysis using Fast Fourier Transforms for the understanding of various cognitive processes taking place during specific tasks of users interacting with computer-based educational environments, and especially virtual reality (VR) systems. The model proposed is supported by recent experimental findings reflecting greater alertness and task engagement in computer-based environments for science learning (Gerlic and Jausovec 1999) and educational virtual environments (Mikropoulos 2000a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bayliss, J. D. & Ballard, D. H. (1998). Single Trial P300 Recognition in a Virtual Environment. The University of Rochester, Computer Science Department, Technical Report 98.1. Available at http://www.cs.rochester.edu/trs/robotics trs.htm.

    Google Scholar 

  • Earle, J. B. B. (1985). The effects of arithmetic task difficulty and performance level on EEG alpha asymmetry. Neuropsychologia, 23(2), 233–242.

    Article  Google Scholar 

  • Fletcher-Flinn, C. M., Suddendorf, T. (1996). Do Computers Affect ‘the mind’? Journal of Educational Computing Research 15(2) 97–112.

    Article  Google Scholar 

  • Freeman, F. G., Mikulka, P. J., Scerbo, M. W., Prinzel, L. J. & Clouarte, K. (2000). Evaluation of a Psychophysiologically Controlled Adaptive Automation System, Using Performance on a Tracking Task. Applied Psychophysiology and Biofeedback, 25(2), 103–115.

    Article  Google Scholar 

  • Friston, K., J. (1997). Imaging cognitive anatomy. Trends in Cognitive Sciences 1(1), 21–27. In:Gale A., & Eysenck, M., W. (1992) Handbook of Individual Differences: biological perspectives (Chichester, John Wiley and Sons).

    Article  Google Scholar 

  • Gerlic, I, & Jausovec, N. (1999). Multimedia: Differences in cognitive processes observed with EEG. Educational Technology Research and Development, 47(3), 5–14.

    Article  Google Scholar 

  • Jausovec, U. & Jausovec, K. (2000). EEG activity during the performance of complex mental problems. International Journal of Psychophysiology, 36, 73–88.

    Article  Google Scholar 

  • Halgren, E., & Marinkovic, K. (1996). Neurophysiological Networks Integrating Human Emotions. In M. S. Gazzaniga (eds) The Cognitive Neurosciences (THE MIT PRESS, Cambridge, MA) 1137–1151.

    Google Scholar 

  • Hansen, L. & Monk, M. (2002). Brain development, structuring of learning and science education: where are we now? A review of some recent research. International Journal of Science Education, 24(4), 343–356.

    Article  Google Scholar 

  • Hillyard, S. A., Mangun, G. R., Woldorf, M. G., & Luck S. J. (1996). Neural Systems Mediating Selective Attention. In M. S. Gazzaniga (eds) The Cognitive Neurosciences (THE MIT PRESS, Cambridge, MA) 665–681.

    Google Scholar 

  • Leamnson, R. N., Betz, M. K. (1999). Technology and the Biological Basis of Learning. Educational Technology & Society, 2(4), 1–5.

    Google Scholar 

  • Lehman, D. (1992). Brain Electric Fields and Brain Functional States. In R. Friedrich, A. Wunderlin (eds) Proceedings in Physics, Evolution ofDynamical Structures in Complex Systems, 69, (pp.235–248) (Berlin: Springer-Verlag).

    Chapter  Google Scholar 

  • Lehmann, D., Henggeler, B., Koukkou, M., Michel, C. M. (1993). Source localization of brain electric field frequency bands during conscious, spontaneous, visual imagery and abstract thought. Cognitive Brain Research, 1, 203–210.

    Article  Google Scholar 

  • MacRae, S. (1994) Models & Methods for the Behavioural Sciences (The British Psychological Society).

    Google Scholar 

  • Maguire, E. A., Frith, C. D., Burgess, N., Donnett, J. G. and O’Keefe, J. (1998) Knowing Where Things Are: Parahippocampal Involvement in Encoding Object Locations in Virtual Large-Scale Space. Journal of Cognitive Neuro science, 10(1), 61–76.

    Article  Google Scholar 

  • McCluskey, J. J. (1997). An Exploratory Study of the Possible Impact of Cerebral Hemisphericity on the Performance of Select Linear, Non-linear, and Spatial Computer Tasks. Journal of Educational Computing Research, 16(3), 269–279.

    Article  Google Scholar 

  • Mikropoulos, T. A. (1997). Virtual Environments in Science Education. In In M. Bevan (ed.), Proceedings of the International Conference on Virtual Reality in Education & Training, (pp. 43–48). Loughborough.

    Google Scholar 

  • Mikropoulos, T. A. (2000a). Brain Activity on Navigation in Virtual Environments. Journal of Educational Computing Research, 24(1), 1–12.

    Article  Google Scholar 

  • Mikropoulos, T. A. (2000b). Design, Development and Evaluation of Advanced Learning Environments. An Overall Approach. Presented at the HERMES Advanced systems for teaching and learning over the World Wide Web, B42–B52, September 1–3 (Samos, Greece).

    Google Scholar 

  • Mölle, M., Schwank, I., Marshall, L., Klöhn, A. & Born, J. (2000). Dimensional Complexity and Power Spectral Measures of the EEG during Functional versus Predicative Problem Solving. Brain and Cognition, 44, 547–563.

    Article  Google Scholar 

  • Ray, W. J. & Cole, H. W. (1985). EEG Alpha Activity Reflects Attentional Demands, and Beta Activity Reflects Emotional and Cognitive Processes. Science, 28, 750–752.

    Article  Google Scholar 

  • Rice, S., Rice, K., Lovel, L. (1996). Enriched Environments, Cortical Plasticity, and Implications for the Systematic Design of Instruction. Educational Technology, March / April, 41–46.

    Google Scholar 

  • Riding, R. J., Glass, A. (1997). Cognitive Style and Individual Differences in EEG Alpha during Information Processing. Educational Psychology, 17(1/2), 219–232.

    Article  Google Scholar 

  • Schaverien, L. & Cosgrove, M. (1999). A Biological basis for generative learning in technology-andscience Part I: A theory of learning. International Journal of Science Education, 21(12), 1223–1235.

    Article  Google Scholar 

  • Schaverien, L. & Cosgrove, M. (2000). A Biological basis for generative learning in technology-andscience Part II: Implications for technology-and-science education. International Journal of Science Education, 22(1), 13–35.

    Article  Google Scholar 

  • Skrandies, W., Reik, P., Kunze, Ch. (1999). Topography of evoked brain activity during mental arithmetic and language tasks: sex differences. Neuropsychologia, 37, 310–329.

    Article  Google Scholar 

  • Strickland, D., Chartier, D. (1997). EEG measurements in a virtual reality headset. Presence: Teleoperators & Virtual Environments, 6(5), 581–588.

    Google Scholar 

  • Wei, J., Zhao, L., Yan, G., Duan, R., Li, D. (1998). The temporal and spatial features of event-related EEG spectral changes in 4 mental conditions. Electroencephalography and clinical Neurophysiology, 106, 416–423.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mikropoulos, T.A. (2003). Brain Research in Science Education Research. In: Psillos, D., Kariotoglou, P., Tselfes, V., Hatzikraniotis, E., Fassoulopoulos, G., Kallery, M. (eds) Science Education Research in the Knowledge-Based Society. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0165-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0165-5_37

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6337-3

  • Online ISBN: 978-94-017-0165-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics