Skip to main content

Intermolecular Methyl Migration in the Solid State

  • Chapter
Organic Solid-State Reactions

Abstract

The conversion of ammonium cyanate to urea, discovered by Friedrich Wöhler in 1848, is widely considered to mark the beginning of organic chemistry as a separate field. However, it is not a well-known fact that this particular transformation occurs in the solid state. Chemical reactions in organic crystals are, therefore, certainly not new to the scientific community. However, for many years there was no systematic development of the subject and many solid-state reactions remained untouched and considered to be ‘nature curiosities’. Organic chemical reactions were carried out in solutions and the development of this field was due to the progress in theories and experiments centered on molecular properties and reactivity. The difficulties associated with the understanding of solid-state reactions arise mostly from the fact that the reactivity of the system is a characteristic of the entire assembly of molecules and there were, at that time, no experimental and theoretical methods to explore the structure of such an assembly. The development of the technique of X-ray crystallography provided the means with which the link between the structure of the assembly of molecules and the solid-state reactivity could be established. The basic rules for solid-state photochemistry in the crystal were formulated [1] by using the term ‘topochemical’ which was coined by Hertel [2]. This rule states that a reaction in the solid state occurs with a minimum amount of atomic or molecular movement. Such a statement implies that there should exist an upper limit for such distances beyond which reaction can no longer occur. Nevertheless, many exceptions to this rule have been found and they were classified as non-topochemically controlled reactions. Major obstacles to the progress of the field are the lack of techniques that enable the study of the structures of short-lived intermediates and the shortage of examples of single-crystal-to-single-crystal transformation. Therefore most of the conclusions are based on the crystal structure of the pre- and post-reacted compound. There is no doubt that with a more comprehensive understand of packing and of topochemical effects, solid-state organic reactions could be planned and exploited in organic chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. D. COHEN and G. M. J. SCHMIDT. J. Chem. Soc. (1964) 1996.

    Google Scholar 

  2. Z. HERTEL. Elektrochem. 37 (1931) 536.

    CAS  Google Scholar 

  3. H. HASSLER. Adv. Polym. Sci. 63 (1984) 1; and references cited therein.

    Google Scholar 

  4. M. HASEGAWA. In “Organic Solid State Chemistry”,edited by G. R. DESIRAJU, (Elsevier, Netherland, 1987) p. 153; and references cited therein.

    Google Scholar 

  5. Y. KAI and Y. YAMAMOTO. In “Reactivity in Molecular Crystals”, edited by Y. OHASHI, ( VCH Publishers, Tokyo, Japan, 1993 ) p. 277.

    Google Scholar 

  6. J. HALEBLIAN and W. MCCRONE. J. Pharm. Sci. 58 (1969) 911.

    Article  CAS  Google Scholar 

  7. N. B. SINGH, R. J. SINGH and N. P. SINGH. Tetrahedron 50 (22) (1994) 6441.

    Article  CAS  Google Scholar 

  8. G. R. DESIRAJU. Solid State Ionics 101 (Pt. 2) (1997) 839.

    Google Scholar 

  9. E. BOLDYREVA and V. BOLDYREV. “Reactivity of Molecular Solids”, ( John Wiley & Sons Ltd., Chichester, UK, 1999 ).

    Google Scholar 

  10. G. R. DESIRAJU. “Organic Solid State Chemistry” ( Elsevier, Amsterdam, 1987 ).

    Google Scholar 

  11. Y. OHASHI. “Reactivity in Molecular Crystals” (VCH, Tokyo, Japan, 1993 ).

    Google Scholar 

  12. K. B. WIBERG and B. I. ROWLAND. J. Am. Chem. Soc. 77 (1955) 2205.

    Article  CAS  Google Scholar 

  13. O. H. WHEELER, F. ROMAN and O. ROSADO. J. Org. Chem. 34 (1969) 966.

    CAS  Google Scholar 

  14. C. G. MCCARTY and L. A. GARNER. “The Chemistry of Amidines and Imidates” edited by S. PATAI. (Wiley, London, 1975 ) p. 189.

    Google Scholar 

  15. P. H. J. CARLSEN, K. B. JOERGENSEN, O. R. GAUTUN, S. JAGNER and M. HAAKANSSON. Acta Chem. Scand. 49 (9) (1995) 676.

    Article  CAS  Google Scholar 

  16. S. B. BROWN and M. J. S. DEWAR. J. ORG. Chem. 43 (7) (1978) 1331.

    CAS  Google Scholar 

  17. R. L. HARLOW and S. H. SIMONSEN. Acta Cryst. B33 (1977) 2662.

    Article  Google Scholar 

  18. M. SMARCINA, B. VYSKOCIL, V. HANUS, M. POLASEK, V. LANGER, B. G. M. CHEW, D. B. ZAX, K. H. VERRIER, T. A. CLAXTON and P. KOCOVSKY. J. Am. Chem. Soc. 118 (1996) 487.

    Article  Google Scholar 

  19. M. V. MARTINEZ-DIAZ, S. RODRIGUEZ-MORGADE, W. SCHAEFER and T. TORRES. Tetrahedron 49(11) (1993) 2261.

    Google Scholar 

  20. a. M. DESSOLIN, M. GOLFIER, A. GONTHIER-VASSAL and H. SZWARC. Nouv. J. Chim. 10(12)(1986) 753. b.

    Google Scholar 

  21. M. DESSOLIN and M. GOLFIER. J. Chem. Soc., Chem. Commun. (1) (1986) 38.

    Google Scholar 

  22. M. DESSOLIN, O. EISENSTEIN, M. GOLFIER, T. PRANGE and P. SAUTET. J. Chem. Soc. Chem. Commun. (1992) 132.

    Google Scholar 

  23. P. VENUGOPALAN, K. VENKATESAN, J. KLAUSEN, E. NOVOTNY-BREGGER, C. LEUMANN, A. ESCHENMOSER and J. D. DUNITZ. Helv. Chim. Acta 74 (3) (1991) 662.

    Article  CAS  Google Scholar 

  24. R. KUHN and H. W. RUELIUS. Chem. Ber. 83 (1950) 420.

    Article  CAS  Google Scholar 

  25. C. N. SUKENIK, J. A. P. BONAPACE, N. S. MANDEL, P. LAU, G. WOOD and R. G. BERGMAN. J. Am. Chem. Soc. 99 (3) (1977) 851.

    Article  CAS  Google Scholar 

  26. C. N. SUKENIK, J. A. P. BONAPACE, N. S. MANDEL, R. G. BERGMAN, P. LAU and G. WOOD. J. Am. Chem. Soc. 97 (18) (1975) 5290.

    Article  CAS  Google Scholar 

  27. a. J. A. R. P. SARMA and J. D. DUNITZ. Acta Crystallogr. B46 (1990) 780.

    Article  Google Scholar 

  28. b. J. A. R. P. SARMA and J. D. DUNITZ. Acta Crystallogr. B46 (1990) 784.

    Article  Google Scholar 

  29. A. GAVEZZOTTI and M. SIMONETTA. Nouv. J. Chim. 2 (1) (1978) 69.

    CAS  Google Scholar 

  30. J. EVEN, M. BERTAULT, A. GIRARD, Y. DELUGEARD and Y. MARQUETON. Chem. Phys. Lett. 267 (5,6) (1997)

    Google Scholar 

  31. K. DWARAKANATH and P. N. PRASAD. J. Am. Chem. Soc. 102 (12) (1980) 4254.

    Article  CAS  Google Scholar 

  32. F. M. MENGER, H. B. KAISERMAN and L. J. SCOTCHIE. Tetrahedron Lett. 25 (1984) 2311.

    Article  CAS  Google Scholar 

  33. a. L. A. SLUYTERMAN and H. J. VEENENDAAL. Recuil (1952) 137. b. L. A. Sluyterman and H. J. Veenendaal. Recuil (1952) 277.

    Google Scholar 

  34. E. Yu. SHALAEV, S. R. BYRN and G. ZOGRAPI. Int. J. Chem. Kinet. 29 (5) (1997) 339.

    Article  CAS  Google Scholar 

  35. A. W. HOFFMANN and O. OLSHAUSEN. Ber. 3 (1870) 269.

    Google Scholar 

  36. P. KLASON. J. Prakt. Chem. 33 (1885) 116.

    Article  Google Scholar 

  37. L. PAOLINI, M. L. TOSATO and M. CIGNITTI. Heterocyclic Chem. 5 (1968) 533.

    Article  Google Scholar 

  38. a. M. L. TOSATO. J. Chem. Soc. Perkin Trans. II. (1979) 1371.

    Google Scholar 

  39. b. M. L. TOSATO. J. Chem. Soc. Perkin Trans. II. (1982) 1321.

    Google Scholar 

  40. c. M. L. TOSATO. J. Chem. Soc. Perkin Trans. II. (1984) 1593.

    Google Scholar 

  41. M. KAFTORY and E. HANDELSMAN-BENORY. MoleC. Cryst. Liq. Cryst. 240 (1994) 241.

    Article  CAS  Google Scholar 

  42. E. HANDELSMAN-BENORY, M. BOTOSHANSKY and M. KAFTORY. Acta Cryst. C51 (1995) 2421.

    Google Scholar 

  43. E. HANDELSMAN-BENORY, M. BOTOSHANSKY, M. GREENBERG, V. SHTEIMAN and M. KAFTORY. Tetrahedron. 56 (2000) 6887.

    Article  CAS  Google Scholar 

  44. H. TAYCHER, V. SHTEIMAN, M. BOTOSHANSKY and M. KAFTORY. Acta Crystallogr. C56 (2000) 832.

    Google Scholar 

  45. M. GREENBERG, V. SHTEIMAN and M. KAFTORY. Acta Crystallogr C56 (2000) 465.

    Google Scholar 

  46. H. TAYCHER, M. BOTOSHANSKY, V. SHTEIMAN and M. KAFTORY. Supramolecular Chem. 13 (2001) 181.

    Article  CAS  Google Scholar 

  47. M. GREENBERG, V. SHTEIMAN and M. KAFTORY. Acta Crystallogr B57 (2001) 428.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kaftory, M. (2002). Intermolecular Methyl Migration in the Solid State. In: Toda, F. (eds) Organic Solid-State Reactions. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0089-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0089-4_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5923-9

  • Online ISBN: 978-94-017-0089-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics