Skip to main content

Expression of Basic Helix-Loop-Helix Proteins and Smooth Muscle Phenotype in the Adult Rat Aorta

  • Chapter
Cardiovascular Specific Gene Expression

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 214))

  • 70 Accesses

Abstract

Smooth muscle cells play a major role in the formation of the vascular lesions found in atherosclerosis and restenosis injury after angioplasty [1,2]. The smooth muscle cells found in such lesions show reduced levels of many markers of the differentiated state of smooth muscle (e.g. SM22α, smooth muscle-myosin heavy chain {SM-MHC} and smooth muscle α-actin {Smα-actin} [3,4]). In some instances the smooth muscle-specific isoforms of contractile proteins (e.g. SM-MHC) are replaced by their non-muscle equivalents. In addition to loss of expression of smooth muscle-specific genes, intimal vascular smooth muscle cells (VSMCs) express genes that are associated with calcium metabolism in bone tissue (e.g. matrix GLA protein and osteopontin [5–8]). There has been significant progress towards identifying the factors involved in promoting or inhibiting smooth muscle cell proliferation in these pathologic conditions. However, little is known about the mechanisms that regulate the differentiated state of this cell type or the factors involved in defining smooth muscle phenotype [9]. Given the phenotypic changes seen in VSMC in pathological conditions, the systems which control the differentiated state of smooth muscle may play a significant role in lesion formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schwartz SM, Campbell GR, Campbell JH. Replication of smooth muscle cells in vascular disease. Circ Res 1986; 58: 427–44.

    Article  PubMed  CAS  Google Scholar 

  2. Ross R. The pathogenesis of atherosclerosis-an update. N Engl J Med 1986; 314: 488–500.

    Article  PubMed  CAS  Google Scholar 

  3. Rovner AS, Murphy RA, Owens GK. Expression Of Smooth-Muscle and Nonmuscle Myosin Heavy-Chains In Cultured Vascular Smooth-Muscle Cells. J Biol Chem 1986; 261: 4740–45.

    Google Scholar 

  4. Shanahan CM, Cary NRB, Metcalfe JC, Weissberg PL. High Expression Of Genes For Calcification-Regulating Proteins In Human Atherosclerotic Plaques. J Clin Invest 1994; 93: 2393–402.

    Article  PubMed  CAS  Google Scholar 

  5. Giachelli CM, Bae N, Almeida M, I)enhardt DT, Alpers CE, Schwartz SM. Osteopontin is elevated during neointima formation in rat arteries and is a novel component of human atherosclerotic plaques. J Clin Invest 1993; 92: 1686–96.

    Article  PubMed  CAS  Google Scholar 

  6. Giachelli C, Bae N, Lombardi D, Majesky M, Schwartz S. Molecular cloning and characterization of 2B7, a rat mRNA which distinguishes smooth muscle cell phenotypes in vitro and is identical to osteopontin (secreted phosphoprotein I, 2aR). Biochem Biophys Res Commun 1991; 177: 867–73.

    Article  PubMed  CAS  Google Scholar 

  7. Grainger DJ, Kemp PR, Liu AC, Lawn RM, Metcalfe JC. Activation of transforming growthfactor-beta is inhibited in transgenic apolipoprotein(a) mice. Nature 1994; 370: 460–62.

    Article  PubMed  CAS  Google Scholar 

  8. Shanahan CM, Weissberg PL, Metcalfe JC. Isolation of gene markers of differentiated and proliferating vascular smooth-muscle cells. Circ Res 1993; 73: 193–204.

    Article  PubMed  CAS  Google Scholar 

  9. Owens GK. Regulation Of Differentiation Of Vascular Smooth-Muscle Cells. Physiol Revs 1995; 75: 487–517.

    CAS  Google Scholar 

  10. Kallmeier RC, Somasundaram C, Babij P. A novel smooth muscle-specific enhancer regulates transcription of the smooth muscle myosin heavy chain gene in vascular smooth muscle cells. J Biol Chem 1995; 270: 30949–57

    Article  PubMed  CAS  Google Scholar 

  11. Shimizu RT, Blank RS, Jervis R, Lawrenzsmith SC, Owens GK. The Smooth-Muscle Alpha-Actin Gene Promoter Is Differentially Regulated In Smooth-Muscle Versus Nonsmooth Muscle-Cells. J Biol Chem 1995; 270: 7631–43.

    Article  PubMed  CAS  Google Scholar 

  12. Kemp PR, Osbourn JK, Grainger DJ, Metcalfe JC. Cloning and analysis of the promoter region of the rat SM22-alpha gene. Biochem J 1995; 310: 1037–43.

    PubMed  CAS  Google Scholar 

  13. Kim S, Ip HS, Lu MM, Clendenin C, Parmacek MS. A serum response factor-dependent transcriptional regulatory program identifies distinct smooth muscle cell sublineages. Mol Cell Biol 1997; 17: 2266–78.

    PubMed  CAS  Google Scholar 

  14. Miano JM, Firulli AB, Olson EN, Hara P, Giachelli CM, Schwartz SM. Restricted Expression Of Homeobox Genes Distinguishes Fetal From Adult Human Smooth-Muscle Cells. Proc Natl Acad Sci USA 1996; 93: 900–05.

    Article  PubMed  CAS  Google Scholar 

  15. Gorski DH, Lepage DF, Patel CV, Copeland NG, Jenkins NA, Walsh K. Molecular-Cloning Of a Diverged Homeobox Gene That Is Rapidly Down- Regulated During the G(0)/G(1) Transition In Vascular Smooth-Muscle Cells. Mol Cell Biol 1993; 13: 3722–33.

    PubMed  CAS  Google Scholar 

  16. Patel CV, Gorski DH, Lepage DF, Lincecum J, Walsh K. Molecular-Cloning Of a Homeobox Transcription Factor From Adult Aortic Smooth-Muscle. J Biol Chem 1992; 267: 26085–90.

    PubMed  CAS  Google Scholar 

  17. Firulli AB, Miano JM, Bi WZ, et al. Myocyte Enhancer-Binding Factor-li Expression and Activity In Vascular Smooth-Muscle Cells–Association With the Activated Phenotype. Circ Res 1996; 78: 196–204.

    Article  PubMed  CAS  Google Scholar 

  18. Kemp PR, Grainger DJ, Shanahan CM, Weissberg PL, Metcalfe JC. The Id gene is activated by serum but is not required for dedifferentiation in rat vascular smooth-muscle cells. Biochem J 1991; 277: 285–88.

    PubMed  CAS  Google Scholar 

  19. Kemp PR, Grainger DJ, Metcalfe JC, Weissberg PL. Id gene-expression antagonizes MyoDinduced myotube formation in vascular smooth-muscle cells. J Cell Biochem 1993; 17A: 938.

    Google Scholar 

  20. Kemp PR, Metcalfe JC, Grainger DJ. Id - a dominant-negative regulator of skeletal-muscle differentiation–is not involved in maturation or differentiation of vascular smooth-muscle cells. FEBS Lett 1995; 368: 81–86.

    Article  PubMed  CAS  Google Scholar 

  21. Matsumura ME, Lobe DR, Jeon C, McNamara CA. Id3 and a novel isoform are involved in the response to vascular injury. Circulation 1997; 96: 1274.

    Google Scholar 

  22. Hollenberg SM, Sternglanz R, Cheng PF, Weintraub H. Identification of a new family of tissue-specific basic helix-loop-helix proteins with a 2-hybrid system. Mol Cell Biol. 1995; 15: 3813–22.

    PubMed  CAS  Google Scholar 

  23. Cserjesi P, Brown D, Lyons GE, Olson EN. Expression Of the Novel Basic Helix-Loop-Helix Gene Ehand In Neural Crest Derivatives and Extraembryonic Membranes During Mouse Development. Dev Biol 1995; 170: 664–78.

    Article  PubMed  CAS  Google Scholar 

  24. Srivastava D, Cserjesi P, Olson EN. A Subclass Of bHLH Proteins Required For Cardiac Morphogenesis. Science 1995; 270: 1995–99.

    Article  PubMed  CAS  Google Scholar 

  25. Srivastava D, Thomas TK, Olson EN, Hill S, Yamagishi H. The bHLH transcription factor dHAND is required for normal vascular development. Circulation 1997; 96: 1681.

    Google Scholar 

  26. Srivastava D, Olson EN. Knowing in your heart what’s right. Trends Cell Biol 1997; 7: 447–53.

    Article  PubMed  CAS  Google Scholar 

  27. Leptin M. Twist and Snail As Positive and Negative Regulators During Drosophila Mesoderm Development. Gene Dev 1991; 5: 1568–76.

    Article  PubMed  CAS  Google Scholar 

  28. Shirokawa JM, Courey AJ. A direct contact between the dorsal rel homology domain and Twist may mediate transcriptional synergy. Mol Cell Biol 1997; 17: 3345–55.

    PubMed  CAS  Google Scholar 

  29. Lilly B, Galewsky S, Firulli AB, Schulz RA, Olson EN. D-MEF2: a MADS box transcription factor expressed in differentiating mesoderm and muscle cell lineages during Drosophila embryogenesis. Proc Natl Acad Sci USA 1994; 91: 5662–66.

    Article  PubMed  CAS  Google Scholar 

  30. Lee YM, Park T, Schulz RA, Kim Y. Twist-mediated activation of the NK-4 homeobox gene in the visceral mesoderm of Drosophila requires two distinct clusters of E-box regulatory elements. J Biol Chem 1997; 272: 17531–41.

    Article  PubMed  CAS  Google Scholar 

  31. Spicer DB, Rhee J, Cheung WL, Lassar AB. Inhibition Of Myogenic bHLH and MEF-2 Transcription Factors By the bHLH Protein Twist. Science 1996; 272: 1476–80.

    Article  PubMed  CAS  Google Scholar 

  32. Bain G, Ray WJ, Yao M, Gottlieb DI. From embryonal carcinoma cells to neurons: the P19 pathway. Bioessays 1994; 16: 343–48.

    Article  PubMed  CAS  Google Scholar 

  33. Suzuki T, Kim HS, Kurabayashi M, et al. Preferential Differentiation Of P19 Mouse Embryonal Carcinoma-Cells Into Smooth-Muscle Cells–Use Of Retinoic Acid and Antisense Against the Central Nervous System-Specific Pou Transcription Factor Brn-2. Circ Res 1996; 78: 395–404.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kemp, P.R., Metcalfe, J.C. (1999). Expression of Basic Helix-Loop-Helix Proteins and Smooth Muscle Phenotype in the Adult Rat Aorta. In: Doevendans, P.A., Reneman, R.S., van Bilsen, M. (eds) Cardiovascular Specific Gene Expression. Developments in Cardiovascular Medicine, vol 214. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9321-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9321-2_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5189-9

  • Online ISBN: 978-94-015-9321-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics