Skip to main content

Potassium Channels; Genes, Proteins, and Patients

  • Chapter
Cardiovascular Specific Gene Expression

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 214))

  • 68 Accesses

Abstract

Potassium (K+) channels play a major role in generating cardiac electrical activity. Cardiac action potentials are characterized by a long duration which is pivotal for proper contraction. In physiological conditions the repolarization process is largely determined by several potassium channels with different time and voltage characteristics. These channels are distributed heterogeneously over different parts of the heart. In addition, developmental changes in channel diversity are pertinent. Furthermore, under the influence of a variety of stimuli, which include metabolic changes, neurohumoral influences and disease, the set of expressed potassium channels may change. In pathophysiological conditions such as cardiac hyperthrophy and/or heart failure, altered characteristics of potassium channels usually lead to prolonged repolarization. Arrhythmias ensue, based on either dispersion in repolarization or reexcitation during the course of the action potential (afterdepolarizations and triggered activity).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kukuljan M, Labarca P, Latorre R. Molecular determinants of on conduction and inactivation in K’ channels. Am J Physiol 1995; 268: C535–56.

    PubMed  CAS  Google Scholar 

  2. Jan LY, Jan YN. Voltage-gated and inwardly rectifying potassium channels. J Physiol 1997; 505: 267–82.

    Article  PubMed  CAS  Google Scholar 

  3. Wang Z, Kiehn J, Yang Q, Brown AM, Wible BA. Comparison of binding and block produced by alternatively spliced Kv1 subunits. J Biol Chem 1996; 271: 28311–17.

    Article  PubMed  CAS  Google Scholar 

  4. Rhodes KJ, Monaghan MM, Barrezueta NX, et al. Voltage-gated K+ channel beta subunits: expression and distribution of Kv beta 1 and Kv beta 2 in adult rat brain. J Neurosci 1996; 16: 4846–60.

    PubMed  CAS  Google Scholar 

  5. Fink M, Duprat F, Lesage F, et al. A new K’ channel beta subunit to specifically enhance Kv2.2 (CDRK) expression. J Biol Chem 1996; 271: 26341–48.

    Article  PubMed  CAS  Google Scholar 

  6. Drewe JA, Verma S, Frech G, Joho RH. Distinct spatial and temporal expression patterns of K’ channel mRNA from different subfamilies. J Neuroscience 1992; 12: 538–48.

    CAS  Google Scholar 

  7. Hugnot JP, Salinas M, Lesage F, et al. Kv8.1, a new neuronal potassium channel subunit with specific inhibitory properties towards Shab and Shaw channels. EMBO J 1996; 15: 3322–31.

    PubMed  CAS  Google Scholar 

  8. Post MA, Kirsch GE, Brown AM. Kv2.1 and electrically silent Kv6.1 potassium channel subunits combine and express a novel current. FEBS Lett 1996; 399: 177–82.

    Article  PubMed  CAS  Google Scholar 

  9. Salinas M, de Weille J, Guillemare E, Lazdunski M, Hugnot W. Modes of regulation of shah K’ channel activity by the Kv8.1 subunit. J Biol Chem 1997; 272: 8774–80.

    Article  PubMed  CAS  Google Scholar 

  10. Jegla T, Salkoff L. A novel subunit for shal K+ channels radically alters activation and inactivation. J Neuroscience 1997; 17: 32–44.

    CAS  Google Scholar 

  11. Dixon JE, McKinnon D. Quantitative analysis of potassium channel mRNA expression in atrial and ventricular muscle of rats. Circ Res 1994; 75: 252–60.

    Article  PubMed  CAS  Google Scholar 

  12. Brahmajothi MV, Morales MJ, Rasmusson RL, Campbell DL, Strauss HC. Heterogeneity in K’ channel transcript expression detected in isolated ferret cardiac myocytes. PACE 1997; 20: 388–96.

    Article  PubMed  CAS  Google Scholar 

  13. Dixon JE, Shi W, Wang H-S, et al. Role of the Kv4.3 K’ channel in ventricular muscle. A molecular correlate for the transient outward current. Circ Res 1996; 79: 659–68.

    Article  PubMed  CAS  Google Scholar 

  14. Isacoff EY, Jan YN, Jan LY. Evidence for the formation of heteromultimeric potassium channels in Xenopus oocytes. Nature 1990; 345: 530–34.

    Article  PubMed  CAS  Google Scholar 

  15. Xu H, Dixon JE, Barry DM, et al. Developmental analysis reveals mismatches in the expression of K’ channel subunits and voltage-gated channel currents in rat ventricular myocytes. J Gen Physiol 1996; 108: 405–19.

    Article  PubMed  CAS  Google Scholar 

  16. Brown AM. Cardiac potassium channels in health and disease. Trends Cardiovasc Med 1997; 7: 118–24.

    Article  PubMed  CAS  Google Scholar 

  17. Warmke J, Drysdale R, Ganetzky B. A distinct potassium channel polypeptide encoded by the Drosophila EAG locus. Science 1991; 252: 1560–2.

    Article  PubMed  CAS  Google Scholar 

  18. Warmke JW, Ganetzky B. A family of potassium channel genes related to EAG in Drosophila and mammals. Proc Natl Acad Sci 1994; 91: 3438–42.

    Article  PubMed  CAS  Google Scholar 

  19. Titus SA, Warmke JW, Ganetzky B. The Drosophila ERG K’ channel polypeptide is encoded by the seizure locus. J Neuroscience 1997; 17: 875–81.

    CAS  Google Scholar 

  20. Shi WM, Wymore RS, Wang HS, Pan ZM, Cohen IS, Mckinnon D, Dixon JE. Identification of two nervous system-specific members of the erg potassium channel gene family. J Neuroscience 1997; 17: 9423–32

    CAS  Google Scholar 

  21. Wang XJ, Reynolds ER, Deak P, Hall LM The seizure locus encodes the Drosophila homologe of the HERG potassium channel. J Neuroscience 1997; 17: 882–90.

    CAS  Google Scholar 

  22. Lees-Miller JP, Kondo C, Wang L, Duff HJ. Electrophysiological characterization of an alternatively processed ERG K’ channel in mouse and human hearts. Circ Res 1997; 81: 7 1926.

    Google Scholar 

  23. London B, Trudeau MC, Newton KP, et al. Two isoforms of the mouse ether-a-go-go-related gene coassemble to form channels with properties similar to the rapidly activating component of the cardiac delayed rectifier K. current. Circ Res 1997; 81: 870–8.

    Article  PubMed  CAS  Google Scholar 

  24. Guy HR, Durell SR, Warmke J, Drysdale R, Ganetzky B. Similarities in amino acid sequences of Drosophila EAG and cyclic nucleotide-gated channels. Science 1991; 254: 730.

    Article  PubMed  CAS  Google Scholar 

  25. Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 1995; 80: 795803.

    Google Scholar 

  26. Trudeau MC, Warmke JW, Ganetzky B, Robertson GA. HERG, a human inward rectifier in the voltage-gated potassium channel family. Science 1995; 269: 92–95.

    Article  PubMed  CAS  Google Scholar 

  27. Smith PL, Baukrowitz T, Yelle G. The inward rectification mechanism of the HERG cardiac potassium channel. Nature 1996; 379: 833–36.

    Article  PubMed  CAS  Google Scholar 

  28. Sanguinetti MC, Jiang C, Curran ME, Keating MT. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 1995; 81: 299–307.

    CAS  Google Scholar 

  29. McDonald TV, Yu Z, Ming Z, et al. A minK-HERG complex regulates the cardiac potassium current IKr. Nature 1997; 388: 289–92.

    Article  PubMed  CAS  Google Scholar 

  30. Wang Q, Curran ME, Splawski I, et al. Positional cloning of a novel potassium channel gene: KvLQT1 mutations cause cardiac arrhythmias. Nat Genet 1996; 12: 17–23.

    Article  PubMed  Google Scholar 

  31. Biervert C, Schroeder BC, Kubisch C, et al. A potassium channel mutation in neonatal human epilepsy. Science 1998; 279: 403–06.

    Article  PubMed  CAS  Google Scholar 

  32. Singh NA, Charlier C, Stauffer D, et al. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet 1998; 18: 25–29.

    Article  PubMed  CAS  Google Scholar 

  33. Charlier C, Singh NA, Ryan SG, et al. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat Genet 1998; 18: 53–55.

    Article  PubMed  CAS  Google Scholar 

  34. Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G. K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature 1996; 384: 7880.

    Article  Google Scholar 

  35. Sanguinetti MC, Curran ME, Zou A, et al. Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature 1996; 384: 80–83.

    Article  PubMed  CAS  Google Scholar 

  36. Lee MP, Hu R-J, Johnson LA, Feinberg AP. Human KVLQT1 gene shows tissue-specific imprinting and encompasses Beckwith-Wiedemann syndrome chromosomal rearrangements. Nat Genet 1997; 15: 181–85.

    Article  PubMed  Google Scholar 

  37. Jiang M, Tseng-Crank J, Tseng GN. Suppression of slow delayed rectifier current by a truncated isoform of KvLQT1 cloned from normal human heart. J Biol Chem 1997; 272: 24109–12.

    Article  PubMed  CAS  Google Scholar 

  38. Demolombe S, Baro I, Pereon Y, et al. A negative dominant isoform of the long QT syndrome 1 gene product. J Biol Chem 1998; 273: 6837–43.

    Article  PubMed  CAS  Google Scholar 

  39. Sakagami M, Fukazawa K, Matsunaga T, et al. Cellular localization of rat Isk protein in the stria vascularis by immunohistochemical observation. Heart Res 1991; 56: 168–72.

    Article  CAS  Google Scholar 

  40. Neyroud N, Tesson F, Denjoy I, et al. A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat Genet 1997; 15: 186–89.

    Article  PubMed  CAS  Google Scholar 

  41. Splawski I, Tristani-Firouzi M, Lehmann MH, Sanguinetti MC, Keating MT. Mutations in the hminK gene cause long QT syndrome and suppress IKr function. Nat Genet 1997; 17: 33840.

    Article  Google Scholar 

  42. Romano C. Congenital cardiac arrhythmia. Lancet 1965; 1: 658–59.

    Article  PubMed  CAS  Google Scholar 

  43. Ward OC. A new familial cardiac syndrome in children. J Ir Med Assoc 1964; 54: 103–06.

    PubMed  CAS  Google Scholar 

  44. Tyson J, Tranebjaerg L, Bellman S, et al. IsK and KvLQT1: mutation in either of the two subunits of the slow component of the delayed rectifier potassium channel can cause Jervell and Lange-Nielsen syndrome. Hum Mol Genet 1997; 6: 2179–85.

    Article  PubMed  CAS  Google Scholar 

  45. Jervell A, Lange-Nielsen F. Congenital deaf mutism, functional heart disease with prolongation of the QT interval, and sudden death. Am Heart J 1957; 54: 59–78.

    Article  PubMed  CAS  Google Scholar 

  46. Vetter DE, Mann JR, Wangemann P, et al. Inner ear defects induced by null mutation of the isk gene. Neuron 1996; 17: 1251–64.

    Article  PubMed  CAS  Google Scholar 

  47. Wilde AAM, Janse MJ. Electrophysiological effects of ATP-sensitive potassium channel modulation: Implications for arrhythmogenesis. Cardiovasc Res 1994; 28; 16–24.

    Article  PubMed  CAS  Google Scholar 

  48. Aquilar-Bryan L, Nichols CG, Wechsler SW, et al. Cloning of the (3-cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science 1995; 268: 423–26.

    Article  Google Scholar 

  49. Inagaki N, Gonoi T, Clement IV JP, et al. Reconstitution of IK.ATP: an inward rectifier subunit plus the sulphonylurea receptor. Science 1995; 270: 1166–70.

    Article  PubMed  CAS  Google Scholar 

  50. Inagaki N, Gonoi T, Clement IV JP, et al. A family of sulphonylurea receptors determines the pharmacological properties of ATP-sensitive K’ channels. Neuron 1996; 16: 1011–17.

    Article  PubMed  CAS  Google Scholar 

  51. Isomoto S, Kondo C, Yamada M, et al. A novel sulphonylurea receptor form with BIR (Kir 6.2) a smooth muscle type ATP-sensitive K’ channel. J Biol Chem 1996; 271: 24321–24.

    Article  PubMed  CAS  Google Scholar 

  52. Krapivinsky G, Gordon EA, Wickman K, et al., The G-protein-gated atrial KC channel IK.ACh is a heteromultimer of two inwardly rectifying K’ channel proteins. Nature 1995; 374: 135–41.

    Article  PubMed  CAS  Google Scholar 

  53. Kass RS, Davies MP. The roles of ion channels in an inherited heart disease: molecular genetics of the long QT syndrome. Cardiovasc Res 1996; 32: 443–54.

    PubMed  CAS  Google Scholar 

  54. Roden DM, Lazzara R, Rosen M, et al. Multiple mechanisms in the long QT syndrome. Current knowledge, gaps, and future directions. Circulation 1996; 94: 1996–2012.

    Article  PubMed  CAS  Google Scholar 

  55. Schwartz PJ, Matteo PS, Moss AJ, et al. Gene-specific influence on the triggers for cardiac arrest in the long QT syndrome (abstract). Circulation 1997; 96: 1–212.

    Article  Google Scholar 

  56. Shalaby FY, Levesque PC, Yang WP, et al. Dominant-negative KvLQT1 mutations underlie the LQT1 form of long QT syndrome. Circulation 1997; 96: 1733–36.

    Article  PubMed  CAS  Google Scholar 

  57. Chouabe C, Neyroud N, Guicheney P, Lazdunski M, Romey G, Barhanin J. Properties of KvLQT1 K’ channel mutations in Romano-Ward and Jervell and Lange-Nielsen inherited cardiac arrhythmias. EMBO J 1997; 16: 5472–79.

    Article  PubMed  CAS  Google Scholar 

  58. Wollnik B, Schroeder BC, Kubisch C, Esperer HD, Wieacker P, Jentsch TJ. Pathophysiological mechanisms of dominant and recessive KVLQT1 K’ channel mutations found in inherited cardiac arrhythmias. Hum Mol Genet 1997; 6: 1943–49.

    Article  PubMed  CAS  Google Scholar 

  59. Fraser GR, Froggatt P, James TN. Congenital deafness associated with electrocardiographic abnormalities. Ann Hum Genet 1964; 28: 133–57.

    Article  PubMed  CAS  Google Scholar 

  60. Sanguinetti MC, Curran ME, Spector PS, Keating MT Spectrum of HERG K`-channel dysfunction in an inherited cardiac arrhythmia. Proc Natl Acad Sci USA 1996; 93: 2208–12.

    Article  PubMed  CAS  Google Scholar 

  61. Moss AJ, Zareba W, Benhorin J, et al. ECG T-wave patterns in genetically distinct forms of the heriditary Long QT syndrome. Circulation 1995; 92: 2929–34.

    Article  PubMed  CAS  Google Scholar 

  62. Wilde AAM, Veldkamp MW. Ion channels, the QT-interval and arrhythmias. PACE 1997; 20: 2048–51.

    Article  PubMed  CAS  Google Scholar 

  63. Tomaselli GF, Beuckelmann DJ, Calkins HG, et al. Sudden cardiac death in heart failure. The role of abnormal repolarization. Circulation 1994; 90: 2534–39.

    Article  PubMed  CAS  Google Scholar 

  64. Choy AMJ, Kupershmidt S, Lang CC, et al. Regional expression of HERG and KvLQT1 in heart failure (abstract). Circulation 1996; 94, suppl I: I - 164.

    Google Scholar 

  65. Gidh-Jain M, Huang B, Jain P, El-Sherif N. Differential expression of voltage-gated K’ channel genes in left ventricular remodeled myocardium after experimental myocardial infarction. Circ Res 1996; 79: 669–75.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Alshinawi, C., Wilde, A.A.M. (1999). Potassium Channels; Genes, Proteins, and Patients. In: Doevendans, P.A., Reneman, R.S., van Bilsen, M. (eds) Cardiovascular Specific Gene Expression. Developments in Cardiovascular Medicine, vol 214. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9321-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9321-2_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5189-9

  • Online ISBN: 978-94-015-9321-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics