Skip to main content

Composting and Solid State Fermentation

  • Chapter
Thermophilic Moulds in Biotechnology

Abstract

Large amounts of organic materials are produced annually in nature that are degraded by microbial action. The decomposition of organic materials takes place slowly on the surface of ground at ambient temperatures. The natural process of degradation can be speeded up by gathering organic material into heaps to conserve part of the heat of fermentation so that the temperature of the mass rises and faster reaction rates are attained. This accelerated process of the decomposition of organic matter by a mixed population of microorganisms in a warm, moist, aerobic environment is known as composting. The process of composting involves an interaction between the organic waste, microorganisms, moisture and oxygen. When the moisture content of the organic waste is brought to a suitable level, and the mass aerated, microbial action speeds up. While attacking organic matter, mixed population of microbes harbouring it multiply and liberate CO2, water, other organic products and energy. A part of the energy is used in metabolism, and the remainder is given off as heat. The end product, compost, is made up of the more resistant residues of the organic matter, breakdown products and dead and living microorganisms, along with products formed from further chemical reactions between these materials. The overall process of composting has been illustrated, as in Fig.1, by Biddlestone and Gray (10).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdulla, A.L., Tengerdy, R.P., and Murphy, V.G. (1985) Optimization of solid substrate fermentation of wheat straw, Biotechnol Bioeng. 27, 27–27.

    Google Scholar 

  2. Aidoo, K.E., Hendry, R., and Wood, B.J.B. (1982) Solid substrate fermentations, Adv. Appl. Microbiol. 28, 28–237.

    Google Scholar 

  3. Alexander, M. (1977) Introduction to Soil Microbiology, 2nd ed., Wiley, New York.

    Google Scholar 

  4. Allen, P.J. and Emergon, R. (1949) Guayule rubber, microbiological improvement by shrub retting, Ind. Eng. Chem. 41, 41–365.

    Google Scholar 

  5. Apinis, A.E. and Pugh, G.J.F. (1967) Thermophilous fungi of birds nests, Mycopathol. et. Mycologia Applic. 3, 3–9.

    Google Scholar 

  6. Bagstam, G., Enebo, L., Lindel, T., and Swenson, H. (1974) Experiments made in bench scale composters, Apparatus, Vatten 4, 4–363.

    Google Scholar 

  7. Baldwin, S.P. and Kendeigh, S.C. (1932) Physiology of temperature of birds, Scient. Pubis. Cleveland Mus. Nat. Hist. 3, 3–196.

    Google Scholar 

  8. Barnes, T.G., Eggins, H.O.W., and Smith, E.L. (1972) Preliminary stages in the development of a process for the microbial upgrading of waste paper, Int. Biodetn. Bull. 8(3), 112–116.

    Google Scholar 

  9. Barton-Wright, E.C. and Tomkins, R.G. (1940) The moisture content and growth of mould in flour, bran and middlings, Cereal Chem. 17, 17–342.

    Google Scholar 

  10. Biddleston, A.J. and Gray, K.R. (1985) Composting, in M. Moo-Young (ed.), Comprehensive Biotechnology, Vol.4, Pergamon Press, New York, pp. 1059–1070.

    Google Scholar 

  11. Block, S.S. (1965) Garbage composting for mushroom production, Appl. Microbiol 13, 13–14.

    Google Scholar 

  12. Browne, C.A. (1929) The spontaneous combustion of hay, U.S. Deptt. of Agric. Technol. Bull. No. 141, pp.1–38.

    CAS  Google Scholar 

  13. Cadman, W.H. (1923) Records of temperature, humidity and carbon dioxide under the sitting hen, Harper Adams util. Poul. Jur. 8, 8–398.

    Google Scholar 

  14. Carlyle, R.E. and Norman, A.G. (1941) Microbial thermogenesis in the decomposition of plant materials. Part II. Factors involved, J. Bacteriol. 41, 41–724.

    Google Scholar 

  15. Carnes, R.A. and Lossin, R.D. (1970) Compost Sci. 11, 18.

    Google Scholar 

  16. Chahal, D.S., Swan, J.E., and Moo-Young, M. (1977) Protein and cellulase production by Chaetomium cellulolyticum grown on wheat straw, Develop. Indust. Microbiol. 18, 18–442.

    Google Scholar 

  17. Chahal, D.S. and Wang, D.I.C. (1978) Chaetomium cellulolyticum growth behaviour on cellulose and protein production, Mycologia 70, 70–170.

    Google Scholar 

  18. Chahal, D.S., Moo-Young, M., and Dhillon, G.S. (1979) Bioconversion of wheat straw components into single cell protein, Can. J. Microbiol. 25, 25–797.

    Google Scholar 

  19. Chahal, D.S., Moo-Young, M., and Vlach, D. (1983) Protein production and growth characteristics of Chaetomium cellulolyticum during solid state fermentation of corn stover, Mycologia 75, 75–603.

    Google Scholar 

  20. Chang, Y. (1967) The fungi of wheat straw composts II. Biochemical and physiological studies, Trans. Br. Mycol. Soc. 50, 50–677.

    Google Scholar 

  21. Chang, Y. and Hudson, J. (1967) The fungi of wheat straw compost. I. Ecological studies, Trans. Br. Mycol. Soc. 50, 50–666.

    Google Scholar 

  22. Christensen, CM. and Gordon, D.R. (1948) The mould Flora of stored wheat and corn and its relation to heating of moist grain, Cereal chem., 25, 25–51.

    Google Scholar 

  23. Cohn, F. (1889) Uber thermogene Wirkung von Pilzen, Jahresber. Schles. Ges. Vaterl Kultur 66, 66–156.

    Google Scholar 

  24. Cohn, F. (1891) Über Warme-Erzeugung durch Schimmelpilze und Bakterien, Jahresber. Ges. Vaterl. Kultur. 68, 68–29.

    Google Scholar 

  25. Cooney, D.G. and Emerson, R. (1964) Thermophilic Fungi, Freeman and Co., San Fransisco, pp. 133–139.

    Google Scholar 

  26. Dalzell, H.W., Gray, K.R., and Biddlortone, A.J. (1979) Composting in Tropical Agriculture, International Institute of Biological Husbandry, Stowmarket, U.K.

    Google Scholar 

  27. Deacon, J.W. (1985) Decomposition of filter paper cellulose by thermophilic fungi acting singly, in combination, and in sequence, Trans. Br. Mycol. Soc. 85, 85–669.

    Google Scholar 

  28. Eastwood, D.J. (1952) The Fungus Flora of composts, Trans. Br. Mycol Soc. 35, 35–220.

    Google Scholar 

  29. Eggins, H.O.W. and Allsopp, D. (1976) Biodeterioration and biodegradation by Fungi, in J.E. Smith ed. D.R. Berry (eds.), The Filamentous Fungi, Vol. I, Edward Arnold, London.

    Google Scholar 

  30. Eicker, A. (1977) Thermophilic fungi associated with the cultivation of Agaricus bisporus (Lange), J.S. Af. Bot. 43, 43–207.

    Google Scholar 

  31. Ek, M. and Eriksson, K.E. (1977) Conversion of waste fibre into protein, Proc. Bioconversion Symp. (I.I.T. Delhi), pp.449–454.

    Google Scholar 

  32. El Refai, A.H., Ghanem, K.M., and El-Sabaery, A.H. (1991) Single cell protein production from orange waste by Sporotrichum thermophile cultivated under optimal conditions, Microbios. 63, 63–16.

    Google Scholar 

  33. Emerson, R. (1968) Thermophiles, in G.C. Ainsworth, and AS. Sussman (eds.), The Fungi, Vol.3, Academic Press, New York and London, pp. 105–128.

    Google Scholar 

  34. Eriksson, K.E. and Larsson, K. (1975) Fermentation of waste mechanical fibres from a newsprint mill by the white- rot fungus Sporotrichum pulverulentum, Biotechnol. Bioeng. 17, 17–348.

    Google Scholar 

  35. Fanrich, R. and Irragang, K. (1981) Cellulase and protein production by Chaetomium cellulolyticum strains grown on cellulosic substrates, Biotechnol. Lett. 3, 3–206.

    Google Scholar 

  36. Fergus, C.L. (1978) The fungal flora of compost during mycelium colonization by the cultivated mushroom Agaricus brunnescens, Mycologia 70, 70–644.

    Google Scholar 

  37. Fergus, C.L. (1964) Thermophilic and thermotolerant moulds and actinomycetes of mushroom composts during peak heating, Mycologia 56, 56–284.

    Google Scholar 

  38. Fermor, R.R. and Grant, W.D. (1985) Degradation of Fungal and actinomycete mycelia by Agaricus bisporus, J. Gen. Microbiol. 131, 131–1734.

    Google Scholar 

  39. Fermor, T.R., Ramdas, P.E., and Smith, J.F. (1985) Compost as a substrate and its preparation, in P.B. Flegg, D.M. Spencer and D.A. Wood (eds.), The Biology and Technology of the cultivated mushroom, Wiley, London, pp.81–109.

    Google Scholar 

  40. Finstein, M.S. and Morris, M.L. (1975) Microbiology of municipal solid waste composting, Adv. Appl. Microbiol. 19, 19–151.

    Google Scholar 

  41. Forsyth, W.G. and Webley, D.M. (1948) Proc. Soc. Appl. Bacteriol. p. 34.

    Google Scholar 

  42. Francis, C.W.P. (1965) Water Pollut. Contr. 66, 19.

    Google Scholar 

  43. Frith, H.J. (1959) Incubator birds, Scientific Am. 201, 201–58.

    Google Scholar 

  44. Galler, W.S. and Davey, C.B. (1971) in Livestock waste Management and Pollution Abatement, Publ. Proc. 271, Amer. Soc. Agr. Eng. St. Joseph, Michigan, pp.159–162.

    Google Scholar 

  45. Garret, S.D. (1963) Saprophytic competition in the soil, in Soil Fungi and soil Fertility, Pergamon Press, pp.115–132.

    Google Scholar 

  46. Gaskill, J.O. and Gilman, J.C. (1939) Role of nitrogen in fungus thermogenesis, Plant Physiol. 14, 14–53.

    Google Scholar 

  47. Ghai, S.K., Kahlon, S.S., and Chahal, D.S. (1979) Single Cell Protein from canning industry waste, Sag waste as substrate for thermotolerant fungi, Indian J. Exp. Biol. 17, 17–791.

    Google Scholar 

  48. Glathe, H. (1960) Zeitschr. Gesam. Kriminal. Werrensch, Praxis. 14, 14–123.

    Google Scholar 

  49. Golueke, CG., Card, B.J., and Mc Gauhey, P.H. (1954) A critical evaluation of inoculum in composting, Appl. Microbiol. 2, 2–53.

    Google Scholar 

  50. Grajek, W. (1987) Production of D-xylanases by thermophilic fungi using different methods of culture, Biotechnol. Lett. 9, 353–356.

    CAS  Google Scholar 

  51. Grajek, W. (1988) Production of protein by thermophilic fungi from sugar beet pulp in solid state fermentation, Biotechnol. Bioeng. 32, 32–260.

    Google Scholar 

  52. Gray, K.R. and Biddlestone, A.J. (1974) Decomposition of urban waste, in C.H. Dickinson and G.J.F. Pugh (eds.), Biology of Litter Decomposition, Vol.2, Academic Press, London ed. New York, pp. 743–775.

    Google Scholar 

  53. Haider, K. and Domsch, K.H. (1969) Decomposition and transformation of lignified plant material by microscopic soil organisms, Arch. Mikrobiol. 64, 64–348.

    Google Scholar 

  54. Hankin, L., Poincelot, R.P., and Anagnostakis, S.L. (1976) Microorganisms from composting leaves : ability to produce extracellular degradative enzymes, Microbial. Ecol. 2, 2–308.

    Google Scholar 

  55. Hayes, W.A. (1968) Microbiological changes in composting wheat straw/horse manure mixtures, Mushroom Sci. 7, 7–186.

    Google Scholar 

  56. Hedger, J.N. and Hudson, H.J. (1974) Nutritional studies on Thermomyces lanuginosus, Trans. Br. Mycol. Soc. 62, 62–143.

    Google Scholar 

  57. Hedger, J.N. (1975) The ecology of thermophiles in Indonesia, in G. Kilburn, O. Reisinger, A. Moumey, J. Cancela da Fonseca (eds.), Biodeterioration and et humifwation, Sarreguemines Ed. Pierr, pp.59–65.

    Google Scholar 

  58. Henssen, A. (1957) Uben die Bedeutung der thermophilen Mikroorganismen fur die Zersetzung des Stallmistes, Arch. Microbiol. 27, 27–81.

    Google Scholar 

  59. Herman, W.A., Mc Gill, W.B., and Dormaar, J.F. (1977) Effects of initial chemical composition of roots of three different grass species, Can. J. Soil. Sci. 57, 57–215.

    Google Scholar 

  60. Hesseltine, C.W. (1972) Solid state fermentations : Biotechnology Report, Biotechnol. Bioeng. 14, 14–532.

    Google Scholar 

  61. Hesseltine, C.W. (1977) Solid state fermentation, Part-2, Process Biochem. 12, 12–32.

    Google Scholar 

  62. Hudson, H.J. (1986) Fungal Biology, Edward Arnold, London.

    Google Scholar 

  63. Jain, M.K., Kapoor, K.K., and Mishra, M.M. (1979) Cellulase activity, degradation of cellulose and lignin, and humus formation by thermophilic fimgi, Trans. Br. Mycol Soc. 73, 73–89.

    Google Scholar 

  64. James, L.H. (1927) Studies in microbial thermogenesis I. Apparatus, Science 65, 65–506.

    Google Scholar 

  65. James, L.H., Rettger, L.F., and Thorn, C. (1928) Microbial thermogenesis II. Heat production in moist organic materials with special reference to the part played by microorganisms, J. Bacteriol. 15, 15–141.

    Google Scholar 

  66. James, U.M. (1977) Production of microbial protein from rice hulls, Proc. Bioconversion Symp. (I.I.T. Delhi), pp.469–478.

    Google Scholar 

  67. Jamenez, E. and Garcia, V.P. (1992) Determination of maturity indices for city refuse composts, Agric. Ecosyst. Environ. 38, 38–343.

    Google Scholar 

  68. Johri, B.N. and Satyanarayana, T. (1984) Ecology of thermophilic fungi, in K.G. Mukherji, V.P. Agnihotri and R.P. Singh (eds.), Progress in Microbial Ecology, Print House, Lucknow, pp.349–361.

    Google Scholar 

  69. Kalogeris, E., Christakopolous, P., Kekos, D., and Macris, B.J. (1998) Studies on the solid-state production of thermostable endoxylanases from Thermoascus aurantiacus: characterization of two isoenzymes, J. Biotechnol 60, 60–163.

    Google Scholar 

  70. Kaila, A. (1952) Humification of straw at various temperatures, Suom. Maataloust. Seur. Julk (Acta Agr. Fenn) 78, 78–32.

    Google Scholar 

  71. Kampee, T., Suwanarit, P., and Noi, K. (1989) Selection of cellulase producing fungi for composting, Thai J. Soils and Fertilisers 11, 11–118.

    Google Scholar 

  72. Kane, B.E. and Mullins, J.T. (1973) Thermophilic fungi in a municipal waste compost system, Mycologia 65, 65–1100.

    Google Scholar 

  73. Lacey, J. (1974) Moulding of sugar cane bagasse and its prevention, Ann. Appl. Biol. 76, 76–76.

    Google Scholar 

  74. Maheswari, R. (1968) Occurrence and isolation of thermophilic fungi, Curr. Sci. 37, 37–279.

    Google Scholar 

  75. Maheswari, R. (1987) The biogeography of thermophilic fungi, Curr. Sci. 56, 56–155.

    Google Scholar 

  76. Malin, H.M. Jr. (1971) Environmental Sci. Technol. 5, 1088.

    Google Scholar 

  77. Martin, J.P. and Haider, K. (1969) Phenolic polymers of Stachybotrys atra, S.cnartarum and Epicoccum nigrum in relation to humic acid formation, Soil Sci. 107, 107–270.

    Google Scholar 

  78. Martin, J.P. and Haider, K. (1971) Microbial activity in relation to soil humus formation, Soil Sci. 111, 111–63.

    Google Scholar 

  79. McCrae, K.C. (1969) Proc. Inst. Civil Eng. 42, 42–300.

    Google Scholar 

  80. Mc Klure, K.E., Klosterman, E.W., and Johnson, R.R. (1970) Ohio Report on Research and Developments in Agriculture Home Economics and Natural Resources, Ohio Agricultural Research and Development Centre, Wooster, Ohio, Vol.55, pp.78–79.

    Google Scholar 

  81. Miehe, H. (1905) Arb. deutsch Landeritsch, Gesellsch. 111, 111–91.

    Google Scholar 

  82. Miehe, H. (1907) Die selbstarhitzung des Heus. Eine biologische Studie. Gustav Fischer, Jena, pp. 1–127.

    Google Scholar 

  83. Miehe, H. (1930) Die warmebildung von reinkulturen im himblinck auf die atiologie der selbsterhitzung pflanzlicher Stoffe, Arch. Mikrobiol. 1, 1–118.

    Google Scholar 

  84. Miehe, H. (1930) Uber die selbsterhitzung des heues. 2e. Aufl. Arb. deutsch. Landwirtsch Gersellsch. Berlin 196: 1–47.

    Google Scholar 

  85. Mishra, M.M., Kapoor, K.K., Jain, M.K., and Singh, C.P. (1981) Cellulose degradation by Humicola lanuginosa, Trans. Br. Mycol. Soc. 76, 76–160.

    Google Scholar 

  86. Moo-Young, M., Chahal, D.S., and Vlach, D. (1977) SCP production by Cheatomium cellulolyticum, Proc. Bioconversion Symp. (I.I.T. Delhi), pp.457–467.

    Google Scholar 

  87. Moo-Young, M., Daugulis, A.J., Chahal, D.S., and Mac Donald, D.G. (1979) The Waterloo process for the production of SCP from wastes, Proc. Biochem. 14, 14–40.

    Google Scholar 

  88. Niese, G. (1959) Mikrobiologische Untersuchungen zur frage der selbsterhitzung Organismen Stoffe, Arch. Mikrobiol. 39, 39–318.

    Google Scholar 

  89. Norberg, S. (1936) Acta Zool. Fenn. 21, 21–168.

    Google Scholar 

  90. Norman, A.G. (1930) The biological decomposition of plant materials. Part I. An adiabatic fermentation apparatus, Mikrobiologia 16, 273–284 (In Russian).

    Google Scholar 

  91. Obrist, W. (1966) Compost Sci. 6, 27.

    Google Scholar 

  92. Ogbonne, C.I.C., Pugh, G.J.F., and Eggins, H.O.W. (1982) The degradation of tree bark by thermophilic and thermotolerant fungi from Nigerian municipal compost, Inter. Biodetn. Bull. 18, 18–24.

    Google Scholar 

  93. Pamment, N., Moo-Young, M., Hsieh, F.H., and Robinson, C.W. (1978) Growth of Chaetomium cellulolyticum on alkali- pretreated hard wood saw dust solids and pretreatment liquor, Appl. Environ. Microbiol. 36, 36–290.

    Google Scholar 

  94. Poincelot, R.P. (1972) Conn. Agric. Exp. Sta. New Haven Bull. 727.

    Google Scholar 

  95. Pope, S., Knaust, H., and Knaust, K. (1962) Production of compost by thermophilic fungus, Mushroom Sci. 5, 5–126.

    Google Scholar 

  96. Purkathofer, H., Sinner, M, and Steiner, W. (1993) Cellulase-free xylanase from Thermomyces lanuginosus — optimisation of production in submerged and solid state culture, Enz. Microbial Technol. 15, 15–690.

    Google Scholar 

  97. Rajasekharan, A.K. and Maheshwari, R. (1993) Thermophilic fungi : an assessment of their potential for growth in soil, J. Biol. 18, 18–354.

    Google Scholar 

  98. Reese, E.T. (1946) Aerobic decomposition of cellulose by microorganisms at temperatures above 40°C, Unpublished Ph.D. thesis, Pennsylvania state college, Evanston, Perm, pp.100.

    Google Scholar 

  99. Rege, R.D. (1927) Biochemical decomposition of cellulosic materials with special reference to the action of fungi, Ann. Appl. Biol. 14, 14–44.

    Google Scholar 

  100. Roche, N., Desgranges, C, and Durand, A. (1994) Study of the solid state production of a thermostable x-L-arabinofuranosidase of Thermoascus aurantiacus on sugar beet pulp, J. Biotechnol. 38, 38–50.

    Google Scholar 

  101. Roche, N. and Durand, A. (1996) Kinetics of Thermoascus aurantiacus solid state fermentation on sugar beet pulp-polysaccharide alteration and production of related enzymatic activities, Appl. Microbiol. Biotechnol. 45, 45–588.

    Google Scholar 

  102. Rose, W.W. and Mercer, W.A. (1968) Fate of insecticides in composted Agricultural waste, Progress Report Part I, West. Res. Lab. Nat. Canners Ass., Berkeley, California (cited by Goleuke, C.G. 1973), Crit. Rev. Environ. Contr. 3, 2617.

    Google Scholar 

  103. Ross, R.C. and Harris, P.J. (1983) An investigation into the selective nature of mushroom compost, Sci. Hortic. (Amsterdam) 19, 19–64.

    Google Scholar 

  104. Ross, R.C. and Harris, P.J. (1983) The significance of thermophilic fungi in mushroom compost preparation, Sci. Hortic. (Amsterdam) 20, 20–70.

    Google Scholar 

  105. Ryu, D.D.Y. (1989) Enhancement of nutritional value of cellulosic feed resources by pretreatment and bioconversion, in Biotechnology for livestock production (prepared by the Animal production and Health Division, F.A.O.), Plenum Press, London and New York, pp.223–243.

    Google Scholar 

  106. Sandhu, D.K. and Sidhu, M.S. (1980) The fungal succession on decomposing sugar cane bagasse, Trans. Br. Mycol.Soc. 75, 75–286.

    Google Scholar 

  107. Satyanarayana, T. (1978) Thermophilic microorganisms and their role in composting process, Ph.D. Thesis, Sagar University, Sagar, pp.212.

    Google Scholar 

  108. Satyanarayana, T., Johri, B.N., and Saksena, S.B. (1977) Seasonal variation in mycoflora of nesting materials of birds with special reference to thermophilic fungi, Trans. Br. Mycol. Soc. 62, 62–309.

    Google Scholar 

  109. Satyanarayana, T. and Johri, B.N. (1981) Volatile sporostatic factors of thermophilic fungal strains of paddy straw compost, Curr. Sci. 50, 50–1766.

    Google Scholar 

  110. Satyanarayana, T. and Johri, B.N. (1983) Variation in xylanolytic activity of thermophilic fungi, Bionature 3, 3–41.

    Google Scholar 

  111. Satyanarayana, T. and Johri, B.N. (1989) Prospects in lignin degradation and upgradation of lignocellulosic residues by thermophilic moulds, Proc. Natl. Symp. on Biotechnology of Lignin Degradation (held at I.V.R.I. Izatnagar, India), pp.88–92.

    Google Scholar 

  112. Schulze, K.L. (1962) Continuous thermophilic composting, Appl. Microbiol. 10, 108–122.

    PubMed  CAS  Google Scholar 

  113. Schulze, K.L. (1965) Compost Sci. 5(3), 5.

    Google Scholar 

  114. Seal, K.J. and Eggins, H.O.W. (1975) The use of thermophilic fungi in the biodeterioration of pig waste, Proc. 3rd Int. Biodegr. Symp. pp.687–693.

    Google Scholar 

  115. Seal, K.J. and Eggins, H.O.W. (1976) The upgrading of agricultural wastes by thermophilic fungi, in G.G. Birch, K.J. Parkar and J.T. Worgen (eds.), Food from waste, Appl. Sci. Publ. London, pp.58–78.

    Google Scholar 

  116. Sen, S., Abraham, T.K., and Chakravarty, S.L. (1979) Biodeterioration and utilization of city wastes by thermophilic microorganisms, Indian J. Exp. Biol. 17, 17–1285.

    Google Scholar 

  117. Sharma, H.S. (1989) Economic importance of thermophilous fungi, Appl. Microbiol. Biotechnol. 31, 31–10.

    Google Scholar 

  118. Sharma, H.S. and Johri, B.N. (1992) The role of thermophilic fungi in agriculture, in D.K. Arora, R.P. Elander and K.G. Mukherji (eds), Hand Book of Applied Mycology, vol.4, Marcel Dekker, Inc. New York, pp. 707–728.

    Google Scholar 

  119. Straatsma, G., Gerrits, J.P.G., Augustijn, M.P.A.M., Opden Camp, H.J.M., Vogels, G.D., and Van Griendsven, L.J.L.D. (1989) Population dynamics of Scytalidium thermophilum in mushroom compost and stimulatory effect on growth rate and yield of Agaricus bisporus, J. Gen. Microbiol. 135, 135–759.

    Google Scholar 

  120. Straatsma, G., Samson, R.A., Olijusma, T.W., Den Camp, H.J.M.O., Gerrits, J.P.G., and van Griensven, L.J.L.D. (1994) Ecology of thermophilic fungi in Mushroom compost with emphasis on Scytalidium thermophilum and growth stimulation of Agaricus bisporus, Appl. Environ. Microbiol. 60, 60–458.

    Google Scholar 

  121. Straatsma, G., Olijnsma, T.W., Gerrits, J.P.G., Amsing, J.G.M., Dencamp, H.J.M.O., and van Griensven, L.J.L.D. (1994) Inoculation of Scytalidium thermophilum in button mushroom compost and its effect on yield, Appl. Environ. Microbiol 60, 60–3054.

    Google Scholar 

  122. Stroller, B.B., Smith, F.B., and Brown, P.E. (1937) A mechanical apparatus for the rapid, high temperature microbial decomposition of fibrous cellulosic materials in the preparation of composts for mushroom cultures, J. Amer. Soc. Agron. 29, 29–723.

    Google Scholar 

  123. Stutzenberger, F.J., Kanfman, A.J., and Lossin, R.D. (1970) Cellulolytic activity in municipal solid waste composting, Can. J. Microbiol. 16, 16–560.

    Google Scholar 

  124. Tansey, M.R. (1973) Isolation of thermophilic fungi from alligator nesting materials, Mycologia 65, 65–601.

    Google Scholar 

  125. Terman, G.L., Soileau, J.M., and Allen, S.E. (1973) J. Environ. Qual. 2, 84.

    CAS  Google Scholar 

  126. Thakur, M.S., Karanth, N.G., and Krishnanand. (1990) Production of fungal rennet by Mucor miehei using solid state fermentation, Appl. Microbiol. Biotechnol 32, 32–413.

    Google Scholar 

  127. Thorn, C. and LeFevre, E. (1921) Flora of corn meal, J. Agr. Res. 22,179–188.

    Google Scholar 

  128. Thomke, S., Rundgren, M, and Eriksson, K.E. (1980) Nutritional evaluation of the white-rot fungus Sporotrichum pulverulentum, Biotechnol. Bioeng. 22, 22–2303.

    Google Scholar 

  129. Vaux, W.G., Weeks, S.A., and Walukas, D.J. (1972) Compost Sci. 13, 17.

    Google Scholar 

  130. Waksman, S.A. and Mc Grath, J.M. (1931) Preliminary study of chemical processing in the decomposition of manure by Agaricus compestris, Am. J. Bot. 18, 18–581.

    Google Scholar 

  131. Waksman, S.A. and Nissen, W. (1932) On the nutrition of the cultivated mushroom and the biochemical charges brought about by their organisms in manure compost, Am. J. Bot. 19, 19–537.

    Google Scholar 

  132. Waksman, S.A. and Cordon, T.C. (1939) Thermophilic decomposition of plant residues in composts by pure and mixed culture of microorganisms, Soil Sci. 47, 47–225.

    Google Scholar 

  133. Waksman, S.A., Cordon, T.C, and Hulpoi, N. (1939) Influence of temperature upon the microbiological population and decomposition processes in composts of stable manure, Soil Sci. 47, 47–113.

    Google Scholar 

  134. Waksman, S.A., Umbreit, W.W., and Cordon, T.C. (1939) Thermophilic actinomycetes and fungi in soils and in composts, Soil Sci. 47, 47–61.

    Google Scholar 

  135. Webley, D.M. (1947) The microbiology of composting I. The behaviour of the aerobic mesophilic bacterial flora of composts and its relation to other changes taking place during composting, Proc. Soc. Appl. Bacteriol 2, 2–89.

    Google Scholar 

  136. Weigant, W.M. (1992) Growth characteristics of the thermophilic fungus Scytalidium thermophilum in relation to production of mushroom compost, Appl. Environ. Microbiol. 58, 58–1307.

    Google Scholar 

  137. Weigant, W.M., Wery, V., Buitenhuis, E.T., and De Bont, J.A.M. (1992) Growth promoting effect of thermophilic fungi on the mycelium of the edible mushroom Agaricus bisporus, Appl. Environ. Microbiol. 58, 58–1307.

    Google Scholar 

  138. Wetmore, A. (1933) Ornithology. Enc. Brit. pp.917–933.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Satyanarayana, T., Grajek, W. (1999). Composting and Solid State Fermentation. In: Johri, B.N., Satyanarayana, T., Olsen, J. (eds) Thermophilic Moulds in Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9206-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9206-2_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5315-2

  • Online ISBN: 978-94-015-9206-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics