Skip to main content

Abstract

Industrial-scale biotechnological processes have progressed vigorously over the last decades. Generally speaking, the problems arising from the implementation of these processes are similar to those of more classical industrial processes and the need for monitoring systems and automatic control in order to optimize production efficiency, to improve products quality or to detect disturbances in process operation is obvious. Nevertheless, automatic control of industrial biotechnological processes is clearly developing very slowly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. J. Alvarez and J. Alvarez 1988. Analysis and control of fermentation processes by optimal and geometric methods. Proc. ACC, 2, 1112–1117

    Google Scholar 

  2. H. Aoufoussi, M. Perrier, J. Chaouki, C. Chavarie and D. Dochain 1992. Feedback linearizing control of a fluidized-bed reactor. Can. J. Chem. Eng., 70, 356–367

    Article  CAS  Google Scholar 

  3. G. Bastin and D. Dochain 1990. On-line Estimation and Adaptive Control of Bioreactors. Elsevier, Amsterdam

    Google Scholar 

  4. G. Bastin and J. Levine 1990. On state reachability of reaction systems. Proc. 29th CDC, 2819–2824

    Google Scholar 

  5. R. Binot, T. Bol, H. Naveau and E. Nyns, 1983. Biomethanation by immobilized fluidised cells. Wat. Sci. Tech., 15, 103–115

    CAS  Google Scholar 

  6. B. Bouaziz and D. Dochain 1993. Control analysis of fixed bed reactors: a singular perturbation approach. Proc. ECC’93, 1741–1745

    Google Scholar 

  7. G. Caminal, F. Lafuente, J. Lopez-Santin, M. Poch and C. Sola 1987. Application of the extended Kalman filter to identification of enzymatic deactivation. Biotechnol. Bioeng., 24, 366–369

    Article  Google Scholar 

  8. L. Chen 1992. Modelling, Identifiability and Control of Complex Biotechnological Processes. PhD thesis, Université Catholique de Louvain, Belgium

    Google Scholar 

  9. L. Chen, G. Bastin and V. Van Breusegem 1991. Adaptive nonlinear regulation of fed-batch biological reactors: an industrial application. Proc. 30th IEEE CDC, 2130–2135

    Google Scholar 

  10. M. Chidambaram and Y. Malleswararao 1991. Nonlinear control of a mixedculture fed-batch bioreactor. Ind. Chem. Eng., 33(2), 53–57

    CAS  Google Scholar 

  11. V. Chotteau and G. Bastin 1992. Identification of a reaction mechanism for a class of animal cell cultures. Proc. ICCAFT 5/IFAC-BIO 2, 215–218

    Google Scholar 

  12. B. Dahhou, J. Bordeneuve and J. Babary 1991. Multivariable long-range predictive control algorithm applied to a continuous flow fermentation process. Proc. IFAC World Congress, 393–397

    Google Scholar 

  13. M. DeTremblay and M. Perrier 1992. Optimisation of fed-batch culture of hybridoma cells using dynamic programming: single and multi-feed cases. Bioprocess Eng., 7, 229–234

    Article  Google Scholar 

  14. M. DeTremblay, M. Perrier, C. Chavarie and J. Archambault 1993. Fedbatch culture of hybridoma cells: comparison of optimal control approach and closed-loop strategies. Bioprocess Eng., 9, 13–21

    Article  Google Scholar 

  15. D. Dochain 1986. On-line Parameter Estimation, Adaptive State Estimation and Adaptive Control of Fermentation Processes. PhD thesis, Université Catholique de Louvain, Belgium

    Google Scholar 

  16. D. Dochain, J . Babary and M. Tali-Maamar 1992. Modelling and adaptive control of nonlinear distributed parameter bioreactors via orthogonal collocation. Automatica, 68, 873–883

    Article  Google Scholar 

  17. D. Dochain and G. Bastin, 1984. Adaptive identification and control algorithms for nonlinear bacterial growth systems. Automatica, 20, 621–634

    Article  Google Scholar 

  18. D. Dochain and G. Bastin 1987. Convention de recherche Solvay — UCL, rapport final. Technical report, UCL, Belgium

    Google Scholar 

  19. D. Dochain and B. Bouaziz 1993. Approximation of the dynamical model of fixed bed reactors via a singular perturbation approach. Proc. IMACS Int. Symp. MIM-S2’93, 34–39

    Google Scholar 

  20. D. Dochain and L. Chen 1992. Local observability and controllability of stirred tank reactors. J. Process Control, 2(3), 139–144

    Article  CAS  Google Scholar 

  21. D. Dochain and M. Perrier 1992. Adaptive linearizing control of activated sludge processes. Proc. Control Systems’92, 211–215

    Google Scholar 

  22. D. Dochain, M. Perrier and A. Pauss 1991. Adaptive control of the hydrogen concentration in anaerobic digestion. Ind. Eng. Chem. Res., 30, 129–136

    Article  CAS  Google Scholar 

  23. D. Dochain, N. Tali-Maamar and J. Babary 1994. Design of adaptive linearizing controllers for fixed bed reactors. Proc. ACC.

    Google Scholar 

  24. M. Fjeld, O. Asbjornsen and K. Astrom 1974. Reaction invariants and their importance in the analysis of eigenvectors, state observability and controllabilitv of the continuous stirred tank reactor. Chem. Eng. Sci., 29, 1917–1926

    Article  CAS  Google Scholar 

  25. J. Flaus, A. Cheruy and J. Engasser 1991. An adaptive controller for batch feed bioprocess. applicaton to lysine production. J. Proc. Cont., 1, 271–281

    Article  CAS  Google Scholar 

  26. J. Fripiat, T. Bol, R. Binot, H. Naveau and E. Nyns 1984. A strategy for the evaluation of methane production from different types of substrate biomass. In: R. Buvet, M.F. Fox and D.J. Picker (Eds.), Biomethane, Production and uses, 95–105, Roger Bowskill Ltd, Exeter (UK)

    Google Scholar 

  27. G. Gavalas 1968. Nonlinear Differential Equations of Chemically Reacting Systems. Springer Verlag, Berlin

    Book  Google Scholar 

  28. M. Golden, B. Pangrie and B. Ydstie 1986. Nonlinear adaptive optimization of a continuous bioreactor. Proc. AIChE 1986 National Meeting, Pap.125b

    Google Scholar 

  29. R. Hamalainen, A. Halme and A. Gyllenberg 1975. A control model for activated sludge wastewater treatment process. Proc. 6th IFAC World Congress, Boston Paper 61:6

    Google Scholar 

  30. M. Henson and D. Seborg 1992. Nonlinear control strategies for continuous fermenters. Chem. Eng. Sci., 47(4), 821–835

    Article  CAS  Google Scholar 

  31. A. Holmberg 1983. A microprocessor-based estimation and control system for the activated sludge process. In: A. Halme (Ed.), Modelling and Control of Biotechnical Processes, 111–120, Pergamon

    Google Scholar 

  32. A. Holmberg and J. Ranta 1982. Procedures for parameter and state estimation of microbial growth process models. Automatica, 18, 181–193

    Article  Google Scholar 

  33. K. Hoo and J. Kantor 1986. Linear feedback equivalence and control of an unstable biological reactor. Chem. Eng. Comm., 46, 385–399

    Article  CAS  Google Scholar 

  34. M. Köhne 1985. Practical experiences with a new on-line BOD measuring device. Env. Technol. Letters, 6, 546–555

    Article  Google Scholar 

  35. H. Kwakernaak and R. Sivan 1972. Linear Optimal Control Systems. John Wiley, New York

    Google Scholar 

  36. P. Tsobanakis, S. Lee, J. Phillips and C. Georgakis 1992. Issues in the optimization, estimation and control of fed-batch bioreactors using tendency models. Proc. ICCAFT 5/IFAC-BIO 2, 71–76

    Google Scholar 

  37. L. Ljung 1979. Asymptotic behavior of the extended Kalman filter as a pa- rameter estimator for linear systems. IEEE Trans. Aut. Cont., 24, 36–50

    Article  Google Scholar 

  38. R. Marino 1990. Adaptive observers for single output nonlinear systems. IEEE Trans. Aut. Cont., 35, 1054–1058

    Article  Google Scholar 

  39. S. Marsili-Libelli 1984. Optimal control of the activated sludge process. Trans. Inst. Meas. Control, 6, 146–152

    Article  Google Scholar 

  40. S. Marsili-Libelli 1989. Modelling, identification and control of the activated sludge process. Adv. Biochem. Eng. Biotechnol., 38, 90–148

    Google Scholar 

  41. F. Mosey 1983. Mathematical modelling of the anaerobic digestion process: regulatory mechanisms for the formation of short-chain volatile acids from glucose. Wat. Sci. Technol., 15, 209–232

    CAS  Google Scholar 

  42. K. Narendra and A. Annaswamy 1989. Stable Adaptive Systems. Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  43. A. Pauss, C. Beauchemin, R. Samson and S. Guiot 1990. Continuous measurement of dissolved H2 in an anaerobic reactor using a commercial probe hydrogen/air fuel cell-based. Biotechnol. Bioeng., 35, 492–501

    Article  CAS  Google Scholar 

  44. M. Perrier and D. Dochain 1993. Evaluation of control strategies for anaerobic digestion processes. Int. J. Adaptive Cont. Signal Proc., 7(4), 309–321

    Article  Google Scholar 

  45. Y. Pomerleau 1990. Modélisation et contrôle d’un procédé fed-batch de culture des levures à pain Saccharomyces cerevisiae. PhD thesis, Ecole Polytechnique de Montréal, Canada

    Google Scholar 

  46. Y. Pomerleau and M. Perrier 1990. Estimation of multiple specific growth rates in bioprocesses. AIChE J., 36(2), 207–215

    Article  CAS  Google Scholar 

  47. P. Renard, V. Van Breusegem, N. Nguyen, H. Naveau and E. Nyns 1991. Implementation of an adaptive controller for the start-up and steady-state running of a biomethanation process operated in the CSTR mode. Biotechnol. Bioeng., 38, 805–812

    Article  CAS  Google Scholar 

  48. P. Renard, D. Dochain, G. Bastin, H. Naveau and E. Nyns 1988. Adaptive control of anaerobic digestion processes: a pilot-scale application. Biotechnol. Bioeng., 31, 287–294

    Article  CAS  Google Scholar 

  49. B. Sonnleitner and O. Kappeli 1986. Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: formulation and verification of an hypothesis. Biotechnol. Bioeng., 28, 927–937

    Article  CAS  Google Scholar 

  50. G. Stephanopoulos and K.-Y. San 1984. Studies on on-line bioreactor identification. Biotechnol. Bioeng., 26, 1176–1188

    Article  CAS  Google Scholar 

  51. V. Van Breusegem and G. Bastin 1992. Order reduction in bioprocess modelling: a singular perturbation solution. Proc. ICCAFT 5/IFAC-BIO 2, 347–350

    Google Scholar 

  52. J. Van Impe 1993. Modelling and Optimal Adaptive Control of Biotechnological Processes. PhD thesis, Katholieke Universiteit Leuven, Belgium, 304 p.

    Google Scholar 

  53. J. Van Impe, B. Nicolai, P. Vanrolleghem, J. Spriet, B. De Moor and J. Vandewalle 1992. Optimal control of the penicillin G fed-batch fermentation: an analysis of a modified unstructured model. Chem. Eng. Comm., 117, 337–353

    Article  Google Scholar 

  54. Y. Yoo, J. Hong and R. Hatch 1985. Sequential estimation of states and kinetic parameters and optimization of fermentation processes. Proc. ACC, 2, 866–871

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dochain, D., Perrier, M. (1998). Monitoring and Adaptive Control of Bioprocesses. In: Van Impe, J.F.M., Vanrolleghem, P.A., Iserentant, D.M. (eds) Advanced Instrumentation, Data Interpretation, and Control of Biotechnological Processes. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9111-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9111-9_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4954-4

  • Online ISBN: 978-94-015-9111-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics