Skip to main content

Immunoconjugates as Anti-Cancer Agents

  • Chapter
Structure-Based Drug Design

Part of the book series: NATO ASI Series ((NSSE,volume 352))

  • 217 Accesses

Abstract

In general, drug design in cancer therapy tends to focus on inhibiting cell growth. In cancer cells, there is abnormal growth activity which is often correlated with the high activity of certain proteins in the tumour cells. If such proteins can be identified and their role in cell growth verified, then limiting their activity by binding an inhibitor molecule at the active site is the conventional approach used in most anticancer drug discovery. One problem with this approach is that the drugs target proliferating cells only and hence, at best, limit tumour growth. The cancer cells are not killed. To kill tumour cells is, of course, a risky process; it is crucial to distinguish adequately between healthy cells and diseased cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Olnes, S. & Pihl, A. (1982). Toxic lectins and related proteins, in P. Cohen & S.Van Heynigen (eds.), The Molecular Action of Toxins and Viruses, Elsevier Biomedical Press, New York, pp. 52–105.

    Google Scholar 

  2. Ready, M.P., Wilson, K., Piatak, M. & Robertus, J.D. (1984). Ricin-like plant toxins are evolutionarily related to single-chain ribosome-inhibiting proteins from Phytolacca. J. Biol. Chem. 259, 15252–15256.

    CAS  Google Scholar 

  3. Rutenber, E., Katzin, B.J., Ernst, S., Collins, E.J., Mlsna, D., Ready, P.J. & Robertus, J.D. (1991). Crystallographic refinement of ricin to 2.5Å. Proteins: Struct. Funct. Genet. 10, 240–250.

    Article  CAS  Google Scholar 

  4. Katzin, B.J., Collins, E.J. & Robertus, J.D. (1991). Structure of ricin A-chain at 2.5 Å resolution. Proteins: Struct. Funct. Genet. 10, 251–259.

    Article  CAS  Google Scholar 

  5. Rutenber, E. & Robertus, J.D. (1991). Structure of ricin B-chain at 2.5 Å resolution. Proteins: Struct. Funct. Genet. 10, 260–269.

    Article  CAS  Google Scholar 

  6. Mlsna, D.J., Monzingo, A.F., Katzin, B.J., Ernst, S. & Robertus, J.D. (1993). Structure of recombinant ricin A-chain at 2.3 A. Protein Sci. 2, 429–435.

    Article  CAS  Google Scholar 

  7. Fitton, J.E., Wright, A.F., Blakey, D., Lynch, J. & Thatcher, D.R. (1992), Immunotoxins in cancer — ICI D0490 : a potent tumour selective immunotoxin for the treatment of colorectal cancer, in T.G. Villa & J. Ablade (eds.), Profiles on Biotechnology, Servicios de Publicaciones, Universidade de Santiago, Spain, pp. 577–588.

    Google Scholar 

  8. Weston, S.A., Tucker, A.D., Thatcher, D.R., Derbyshire, D.J. & Pauptit, R.A. (1994). X-ray structure of recombinant ricin A-chain at 1.8 A resolution. J. Mol. Biol. 244, 410–422.

    Article  CAS  Google Scholar 

  9. Chaddock, J.A. & Roberts, L.M. (1993). Mutagenesis and kinetic analysis of the active site Glu177 of ricin A-chain. Protein Eng. 6, 425–431.

    Article  CAS  Google Scholar 

  10. Kim, Y. & Robertus, J.D. (1992). Analysis of several key active site residues of ricin A-chain by mutagenesis and X-ray crystallography. Protein Eng. 5, 775–779.

    Article  CAS  Google Scholar 

  11. Kim, Y., Mlsna, D., Monzingo, A.F., Ready, M.P., Frankel, A. & Robertus, J.D. (1992). Structure of a ricin mutant showing rescue by a non-catalytic residue. Biochemistry 31, 3294–3296.

    Article  CAS  Google Scholar 

  12. Monzingo, A.F. & Robertus, J.D. (1992). X-ray analysis of substrate analogues in the ricin A-chain active site. J. Mol. Biol. 227, 113 6–1145.

    Google Scholar 

  13. Ren, J., Wang, Y., Dong, Y. & Stuart, D.I. (1994). The N-glycosidase mechanism of ribosome-inactivating proteins implied by crystal structure of α-momorcharin. Structure 2, 7–16.

    Article  CAS  Google Scholar 

  14. Sherwood, R.F., Melton, R.G., Alwan, S.M. & Hughes, P. (1985). Purification and properties of carboxypeptidase G2 from Pseudomonas sp. strain RS-16. Use of a novel triazine dye affinity method. Eur. J. Biochem. 148, 447–452.

    Article  CAS  Google Scholar 

  15. Rosen, F. & Nichol, C.A. (1962). Inhibition of the growth of an amethopterin-refractory tumor by dietary restriction of folic acid. Cancer Res. 22, 495–5 00.

    CAS  Google Scholar 

  16. Bleyer, W.A. (1978). The clinical pharmacology of methotrexate. New applications of an old drug. Cancer 41, 35–51.

    Google Scholar 

  17. Kalghatgi, K.K. & Bertino, J.R. (1981). Folate-degrading enzymes: a review with special emphasis on carboxypeptidase G, in J.S. Molcenberg & J. Roberts (eds.), Enzymes as drugs, John Wiley & Sons, Inc., New York, pp. 77–102.

    Google Scholar 

  18. Osborn, M.J., Freeman, M. & Huennekens, F.M. (1958). Inhibition of dihydrofolic reductase by aminopterin and amethopterin. Proc. Soc. Exp. Biol. Med. 97, 429–431.

    CAS  Google Scholar 

  19. Widemann, B.C., Hetherington, M.L., Smithson, W.A., Murphy, R.F., Balis, F.M. & Adamson, P.C. (1995). Carboxypeptidase-G2 rescue in a patient with high dose methotrexate-induced nephrotoxicity. Cancer 76, 521–526.

    Article  CAS  Google Scholar 

  20. Bagshawe, K.D. (1987). Antibody directed enzymes revive anti-cancer prodrugs concept. Br. J. Cancer 56, 531–532.

    Article  CAS  Google Scholar 

  21. Bagshawe, K.D. (1989). Towards generating cytotoxic agents at cancer sites. Br. J. Cancer 60, 275–281.

    Article  CAS  Google Scholar 

  22. Melton, R.G. & Sherwood, R.F. (1996). Antibody-Enzyme C onj ugate s for Cancer Therapy. J. Natl. Cancer Inst. 88, 153–165.

    Article  CAS  Google Scholar 

  23. Springer, C.J. & Niculescu-Duvaz, I. (1995). Antibody-directed enzyme prodrug therapy (ADEPT) with mustard prodrugs. Anti-Cancer Drug Design 10, 361–372.

    CAS  Google Scholar 

  24. Bagshawe, K.D., Springer, C.J., Searle, F., Antoniw, P., Sharma, S.K., Melton, R.G. & Sherwood, R.F. (1988). A cytotoxic agent can be generated selectively at cancer sites. Br. J. Cancer 58, 700–703.

    Article  CAS  Google Scholar 

  25. Lloyd, L.F., Collyer, C.A. & Sherwood, R.F. (1991). Crystallization and preliminary crystallographic analysis of carboxypeptidase G2 from Pseudomonas sp. strain RS-16. J. Mol. Biol. 220, 17–18.

    Article  CAS  Google Scholar 

  26. Tucker, A.D., Rowsell, S., Melton, R.G. & Pauptit, R.A. (1996). A new crystal form of carboxypeptidase G2 from Pseudomonas sp. strain RS-16 that is more amenable to structure determination. Acta Crystallogr. sect. D, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pauptit, R., Weston, S., Rowsell, S., Derbyshire, D., Tucker, A. (1998). Immunoconjugates as Anti-Cancer Agents. In: Codding, P.W. (eds) Structure-Based Drug Design. NATO ASI Series, vol 352. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9028-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9028-0_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5078-6

  • Online ISBN: 978-94-015-9028-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics