Skip to main content

Fractional Flow Reserve

From Coronary Pressure to Coronary Flow

  • Chapter
Coronary Pressure

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 195))

Abstract

As explained in the former chapter, the major disadvantages of absolute coronary flow reserve for clinical decision-making are the variability of normal values, the dependency on hemodynamic loading conditions, and the inability to distinguish the effects of epicardial coronary disease and microvascular disease on coronary blood flow1–5. As a result, there is a wide variation in normal values and a large overlap between normal and pathologic values, i.e. values associated with inducible ischemia or not5–7. Therefore, clinical decision-making based upon absolute coronary flow reserve, remains difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hoffman JIE: Maximal coronary flow and the concept of coronary vascular reserve. Circulation1984; 70: 153–159.

    Article  PubMed  CAS  Google Scholar 

  2. Nissen SE, Gurley JC: Assessment of the functional significance of coronary stenosis: Is digital angiography the answer ? Circulation 1990; 81: 1431–1435.

    Article  PubMed  CAS  Google Scholar 

  3. Kirkeeide RL, Gould KL, Parsel L: Assessment of coronary stenoses by myocardial perfusion during pharmacologic coronary vasodilation: VIII. Validation of coronary flow reserve as a single integrated functional measure of stenosis severity reflecting all its geometric dimensions. J Am Coll Cardiol 1986; 7: 103–113.

    Article  PubMed  CAS  Google Scholar 

  4. Gould KL, Kirkeeide RL, Buchi M: Coronary flow reserve as a physiologic measure of stenosis severity. J Am Coll Cardiol 1990; 15: 459–74.

    Article  PubMed  CAS  Google Scholar 

  5. Hongo M, Nakatsuka T, Watanabe N, Takenaka H, Tanaka M, Kinoshita O, Okubo S, Sekiguchi M: Effects of heart rate on phasic coronary blood flow pattern and flow reserve in patients with normal coronary arteries: A study with an intravascular Doppler catheter and spectral analysis. Am Heart J 1994; 127: 545–551.

    Article  PubMed  CAS  Google Scholar 

  6. Ofili EO, Labovitz J, Kern MJ. Coronary flow velocity dynamics in normal and diseased arteries. Am J Cardiol 1993; 71: 3D–9D.

    Article  Google Scholar 

  7. De Bruyne B, Bartunek J, Sys SU, Pijls NHJ, Heyndrickx GR, Wijns W. Simultaneous coronary pressure and flow velocity measurements in humans. Circulation 1996; 94: 1842–49.

    Article  PubMed  Google Scholar 

  8. De Bruyne B, Pijls NHJ, Paulus WJ, Vantrimpont PJ, Sys SU, Heyndrickx GR. Transstenotic coronary pressure gradient measurement in humans: in vitro and in vivo evaluation of a new pressure monitoring angioplasty guide wire. J Am Coll Cardiol 1993; 22: 119–126.

    Article  PubMed  Google Scholar 

  9. Pijls NHJ, Van Son JAM, Kirkeeide RL, De Bruyne B, Gould KL. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation 1993; 87: 1354–67.

    Article  PubMed  CAS  Google Scholar 

  10. De Bruyne B, Baudhuin T, Melin JA, Pijls NHJ, Sys SU, Bol A, Paulus WJ, Heyndrickx GR, Wijns W. Coronary flow reserve calculated from pressure measurements in man. Validation with positron emission tomography. Circulation 1994; 89: 1013–1022.

    Article  PubMed  Google Scholar 

  11. Pijls NHJ, Van Gelder B, Van der Voort P, Peels K, Bracke FALE, Bonnier HJRM, El Gamal MIH. Fractional Flow Reserve. A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation 1995; 92: 3183–3193.

    Article  PubMed  CAS  Google Scholar 

  12. Pijls NHJ, Bech GJW, El Gamal MIH, Bonnier HJRM, De Bruyne B, Van Gelder B, Michels HR, Koolen JJ. Quantification of recruitable coronary collateral blood flow in conscious humans and its potential to predict future ischemic events. J Am Coll Cardiol 1995; 25: 1522–1528.

    Article  PubMed  CAS  Google Scholar 

  13. Pijls NHJ, De Bruyne B, Peels K, Van der Voort PH, Bonnier HJRM, Bartunek J, Koolen JJ. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 1996; 334: 1703–1708.

    Article  PubMed  CAS  Google Scholar 

  14. Van de Voort PH, Van Hagen E, Hendrix G, Van Gelder B, Bech GJW, Pijls NHJ. Comparison of intravenous to intracoronary papaverine for calculation of pressurederived fractional flow reserve. Cath Cardiov Diagn 1996; 39: 120–125.

    Article  Google Scholar 

  15. Aueron FM, Grüntzig AR. Percutaneous transluminal coronary angioplasty. Indication and current status. Primary Cardiol 1984; 10: 97–107.

    Google Scholar 

  16. De Bruyne B, Sys S, Heyndrickx GR. PTCA catheters versus fluid-filled pressure monitoring guide wires for coronary pressure measurements and correlation with quantitative coronary angiography. Am J Cardiol 1993; 72: 1101–1106.

    Article  PubMed  Google Scholar 

  17. Rothman MT, Bairn DS, Simpson JB, Harrison DC: Coronary hemodynamics during PTCA. Am J Cardiol 1982; 49: 1615–1622.

    Article  PubMed  CAS  Google Scholar 

  18. Choksi SK, Meyers S, Abi-Mansour P: Percutaneous transluminal coronary angioplasty: Ten years’ experience. Prog Cardiovasc Dis 1987; 30: 147–210.

    Article  Google Scholar 

  19. MacIsaac HC, Knudtson ML, Robinson VJ, Manyari DE: Is the residual translesional pressure gradient useful to predict regional myocardial perfusion after percutaneous transluminal coronary angioplasty ? Am Heart J 1989; 117: 783–790.

    Article  PubMed  CAS  Google Scholar 

  20. Kimball BP, Dafopoulos N, Lipreti V: Comparative evaluation of coronary stenoses using fluid dynamic equations and standard quantitative coronary arteriography. Am J Cardiol 1989; 64: 6–10.

    Article  Google Scholar 

  21. Emanuelsson H, Dohnal M, Lamm C, Tenerz L: Initial experiences with a miniaturized pressure transducer during coronary angioplasty. Cathet Cardiovasc Diagn 1991; 24: 137–143.

    Article  PubMed  CAS  Google Scholar 

  22. Lamm C, Dohnal M, Serruys PW, Emanuelsson H: High fidelity translesional pressure gradients during percutaneous transluminal coronary angioplasty: correlation with quantitative coronary angiography.

    Google Scholar 

  23. Bellamy RF. Diastolic coronary artery pressure-flow relations in the dog. Circ Research 1978; 43: 92–101.

    Article  CAS  Google Scholar 

  24. Satoh S, Klocke FJ, Canty JM. Tone-dependent coronary arterial-venous pressure differences at the cessation of venous outflow during long diastoles. Circulation 1993; 88: 1238–1244.

    Article  PubMed  CAS  Google Scholar 

  25. Pantely GA, Ladley HD, Bristow JD: Low zero-flow pressure and minimal capacitance effect on diastolic coronary arterial pressure-flow relationships during maximum vasodilation in swine. Circulation 1984; 70: 485–494.

    Article  PubMed  CAS  Google Scholar 

  26. Dole WO, Alexander GM, Campbell AB, Hixson EL, Bishop VS: Interpretation and physiological significance of diastolic coronary artery pressure-flow relationships in the canine coronary bed. Circ Res 1984; 55: 215–226.

    Article  PubMed  CAS  Google Scholar 

  27. Klocke FJ, Mates RE, Canty JM, Ellis AK: Coronary pressure-flow relationships: Controversial issues and probable implications. Circ Res 1985; 56: 310–323.

    Article  PubMed  CAS  Google Scholar 

  28. Di Mario C, Krams R, Gil R, Serruys PW. Slope of the instantaneous hyperemic diastolic coronary flow velocity-pressure relation. A new index for assessment of the physiological significance of coronary stenosis in humans. Circulation 1994; 90: 1215–1224.

    Article  PubMed  Google Scholar 

  29. Gould KL: Coronary Artery Stenosis. New York, Elsevier, 1990, pp 79–91.

    Google Scholar 

  30. Mancini GBJ, McGillem MJ, De Boe SF, Gallagher KP: The diastolic hyperemic flow versus pressure slope index: microsphere validation of an alternative to measures of coronary reserve. Circulation 1991; 84: 862–870.

    Article  PubMed  CAS  Google Scholar 

  31. Di Mario C, Krams R, Gil R, Meneveau N, Serruys PW: The instanteneous hyperemic pressure-flow relationship in conscious humans. In: Reiber JHC, Serruys PW, eds.: Progress in quantitative coronary arteriography. Dordrecht, NL: Kluwer Academic Publishers; 1994: 247–268.

    Chapter  Google Scholar 

  32. Gross GJ, Warltier DC. Coronary steal in four models of single or multiple vessel obstruction in dogs. Am J Cardiol 1981; 48: 84–92.

    Article  PubMed  CAS  Google Scholar 

  33. Demer L, Gould KL, Kirkeeide R. Assessing stenosis severity; coronary flow reserve, collateral function, quantitative coronary arteriography, positron imaging, and digital subtraction angiography. A review and analysis. Prog CV Dis 1988; 30: 307–322.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pijls, N.H.J., De Bruyne, B. (1997). Fractional Flow Reserve. In: Coronary Pressure. Developments in Cardiovascular Medicine, vol 195. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8834-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8834-8_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-8836-2

  • Online ISBN: 978-94-015-8834-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics