Skip to main content

The Coronary Circulation

  • Chapter
Coronary Pressure

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 195))

  • 52 Accesses

Abstract

As this book deals with the relationship between coronary pressure and myocardial blood flow, some basic anatomic and physiological concepts should be well understood. This chapter does not claim to be an extensive review of the physiology of the coronary circulation but aims at providing the reader with the anatomic and physiologic background required to understand the principles, advantages, and limitations of the concept of pressure-derived fractional flow reserve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bassenge E, Heusch G. Endothelial and neuro-humoral control of coronary blood flow in health and disease. Rev Physiol Biochem Pharmacol. 1990;116:77–165.

    PubMed  CAS  Google Scholar 

  2. Dole WP. Autoregulation of the coronary circulation. Prog Cardiovasc Dis 1987;29:293–323.

    Article  PubMed  CAS  Google Scholar 

  3. Hoffman JIE. Transmural myocardial perfusion. Prog Cardiovasc Dis 1987;29:429–464.

    Article  PubMed  CAS  Google Scholar 

  4. Hoffman JIE, Spaan JAE. Pressure-flow relations in coronary circulation. Physiol Rev 1990:70:331–390.

    PubMed  CAS  Google Scholar 

  5. Spaan JAE Coronary blood flow. Kluwer Academic Publishers 1991.

    Google Scholar 

  6. Gould KL. Coronary artery stenosis. Elsevier Science Publishing Co, Inc 1991.

    Google Scholar 

  7. Pijls NHJ, Van Gelder B, van der Voort P, Peels K, Bracke FALE, Bonnier HJRM, El Gamal MIH. Fractional flow reserve. A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation, 1995;92:3183–3193.

    Article  PubMed  CAS  Google Scholar 

  8. Chilian WM, Layne SM, Klausner EC, Eastham CL, Marcus ML. Redistribution of coronary microvascular resistance produced by dipyridamole. Am J Physiol 1989;256: H383–H390.

    Google Scholar 

  9. Lopez JAG, Amstrong ML, Piegors DJ, Heistad DD. Effect of early and advanced atherosclerosis on vascular response to serotonine, thromboxane A2, and ADP. Circulation 1989;79:698–705

    Article  PubMed  CAS  Google Scholar 

  10. Yokoyama I, Ohtake T, Momommura S, Nishikawa J, Sasaki Y, Omata M. Reduced coronary flow reserve in hypercholesterolemic patients without overt coronary stenosis. Circulation 1996;94:3232–3238.

    Article  PubMed  CAS  Google Scholar 

  11. Pitkänen O-P, Raitakari OT, Niinikoski H, Nuutila P, Iida H, Voipio-Pulkki LM, Härkönen R, Wegelius U, Rönnemaa T, Viikari J, Knuuti J. Coronary flow reserve is impaired in young men with familial hypercholesterolemia. J Am Coll Cardiol 1996; 28:1705–1711.

    Article  PubMed  Google Scholar 

  12. Kern MJ, Bach RG, Mechem CJ, Caracciolo EA, Aguirre FV, Miller LW, Donohue TJ. Variations in normal coronary vasodilatory reserve stratified by artery, gender, heart transplantation and coronary artery disease. J Am Coll Cardiol 1996;28:1154–1160.

    Article  PubMed  CAS  Google Scholar 

  13. Uren NG, Crake T. Resistive vessel function in coronary artery disease. Heart 1996; 76:299–304.

    Article  PubMed  CAS  Google Scholar 

  14. Borg TK, Caulfied JB. The collagen matrix of the heart. Fed Proc 1981;40:2037–2041.

    PubMed  CAS  Google Scholar 

  15. Henquell L, Odoroff CL, Honig CR. Coronary intercapillary distance during growth: relation to PO2 and aerobic capacity. Am J Physiol 1978;231:1852–1859.

    Google Scholar 

  16. Potter RF, Groom AC. Capillary diameter and geometry in cardiac and skeletal muscle studied by means of corrosion casts. Microvasc Res 1983;25:68–84.

    Article  PubMed  CAS  Google Scholar 

  17. Fung YC, Zweifach BW, Intaglietta M. Elastic environment of the capillary bed. Circ Res 1966; 19: 441–461.

    Article  PubMed  CAS  Google Scholar 

  18. Levy BI, Samuel JL, Tedgui A, Kotelianski V, Marotte F, Poitevin P, Chadwick RS. Intramyocardial blood volume measurement in the left ventricle of rat arrested hearts. In: Cardiovascular Dynamics and Models 1988. Eds. Brun P, Chadwick RS, Levy BI, INSERM, Paris: 65–76.

    Google Scholar 

  19. Roberts JT, Weam JT. Quantitative changes in the capillary-muscle relationship in human hearts during normal growth and hypertrophy. Am Heart J1941;21: 617–633.

    Article  Google Scholar 

  20. Gerdes AM, Kasten FH. Morphometric study of endomyocardium and epimyocardium of the left ventricle in adult dogs. Am J Anat 1980; 159:389–394.

    Article  PubMed  CAS  Google Scholar 

  21. Schaper W, Ito WD. Molecular mechanisms of coronary collateral vessel growth. Circ Res 1996;79:911–919.

    Article  PubMed  CAS  Google Scholar 

  22. Thornton SC, Mueller SN, Levine EM. Human endothelial cells: use of heparine in cloning and longterm serial cultivation. Science 1983;222:623–625.

    Article  PubMed  CAS  Google Scholar 

  23. Folkman J, Klassbrun M. Angiogenic factors. Science 1987;235:442–447.

    Article  PubMed  CAS  Google Scholar 

  24. Unger SF, Sheffield CD, Epstein SE. Heparine promotes the formation of extracardiac to coronary anastomoses in a canine model. Am J Physiol 1991;260:H1625–H1634.

    Google Scholar 

  25. Caroll SM, White FC, Roth DM, Bloor CM. Heparine accelerates coronary collateral development in a porcine model of coronary artery occlusion. Circulation 1993; 88:198–207.

    Article  Google Scholar 

  26. Banai S, Jaklitsch MT, Shou M, Lazarous DF, Scheinowitz M, Biro S, Epstein SE, Unger E. Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation 1994;89:2183–2189.

    Article  PubMed  CAS  Google Scholar 

  27. Quyumi AA, Diodati JG, Lakatos E, Bonow RO, Epstein SE. Angiogenic effects of low molecular weight heparine in patients with stable coronary artery disease : a pilot study. J Am Coll Cardiol 1993;22:635–641.

    Article  Google Scholar 

  28. Schaper W, Görge G, Winckler B, Schaper J. The collateral circulation in the heart. Prog Cardiovasc Diseases 1988; 31:57–77.

    Article  CAS  Google Scholar 

  29. Vanoverschelde JL, Wijns W, Depre C, Essamri B, Heyndrickx GR, Borgers M, Bol A, Melin JA. Mechanisms of chronic regional post-ischemic dysftinction in humans. New insights from the study of non-infarcted collateral-dependent myocardium. Circulation 1993; 87:1513–1523.

    Article  PubMed  CAS  Google Scholar 

  30. Sabiston DC Jr, Gregg DE. Effect of cardiac contraction on coronary blood flow. Circulation 1957;15: 14–20.

    Article  PubMed  Google Scholar 

  31. Katz SA, Feigl EO. Systole has little effect on diastolic coronary blood flow. Circ Res 1988; 62: 443–451.

    Article  PubMed  CAS  Google Scholar 

  32. Lowensohn HS, Khouri EM, Gregg DE, Pyle RL, Patterson RE. Phasic right coronary artery flow in conscious dogs with normal and elevated right ventricular pressures. Circ Res 1976;39:760–766.

    Article  PubMed  CAS  Google Scholar 

  33. Bruinsma P, Arts T, Dankelman J, Spaan JAE. Model of the coronary circulation based on pressure dependence of coronary resistance and compliance. Basic Res Cardiol 1988:83:510–524.

    Article  PubMed  CAS  Google Scholar 

  34. Reneman RS. Cited by Spaan, in Spaan JAE. Coronary blood flow. Kluwer Academic Publishers 1991.

    Google Scholar 

  35. Marzilli M, Goldstein S, Sabbah HN, Lee T, Stein PD. Modulating effect of regional myocardial performance on local myocardial perfusion in the dog. Circ Res 1979; 45:634–640.

    Article  PubMed  CAS  Google Scholar 

  36. Krams R, Sipkema P, Zegers J, Westerhof N. Contractility is the main determinant of coronary systolic flow impediment. Am J Physiol 1989;257:H1936–H1944.

    Google Scholar 

  37. Krams R, Sipkema P, Westerhof N. Varying elastance concept may explain coronary systolic flow impediment. Am J Physiol 1989; 257:H1471–H1479.

    Google Scholar 

  38. Kajiya F, Tsujioka K, Ogasaware Y, Hiramatsu O, Wada Y, Goto M, Yanaka M. Analysis of the characteristics of the flow velocity waveforms in the left atrial small arteries and veins in the dog. Circ Res 1989;65:1172–1181.

    Article  PubMed  CAS  Google Scholar 

  39. Camici P, Ferranni E, Opie LH. Myocardial metabolism in ischemic heart disease: Basic principles and application to imaging by positron emission tomography. Prog Cardiovasc Dis Disease 1989; 32:217–238.

    Article  CAS  Google Scholar 

  40. Eckenhoff JE, Haflenschiel JH, Landmesser CM, Harmel M. Cardiac oxygen metabolism and control of the coronary circulation. Am J Physiol 1947; 149:634–639.

    PubMed  CAS  Google Scholar 

  41. Mosher P, Ross Jr J, McFate PA, Shaw RF. Control of coronary blood flow by an autoregulatory mechanism. Circ Res 1964;14:250–259.

    Article  PubMed  CAS  Google Scholar 

  42. Canty JM. Coronary pressure-function and steady-state pressure-flow relations during autoregulation in the unanesthetized dog. Circ Res 1988;63:821–836.

    Article  PubMed  Google Scholar 

  43. De Bruyne B, Melin JA, Heyndrickx GR, Wijns W. Autoregulatory plateau in patients with coronary artery disease. Circulation 1994;90:I-113 (abstract).

    Google Scholar 

  44. Berne RM. Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Physiol 1963;204:317–322.

    PubMed  CAS  Google Scholar 

  45. Olsson RA, Bünger R. Metabolic control of coronary blood flow. Prog Cardiovasc Dis 1987;29:369–387.

    Article  PubMed  CAS  Google Scholar 

  46. Katori M, Berne RM. Release of adenosine from anoxic hearts. Relationship to coronary flow. Circ Res 1966;19:420–425.

    Article  PubMed  CAS  Google Scholar 

  47. Dole WP, Yamada N, Bishop VS, Olsson RA. Role of adenosine in coronary blood flow regulations after reductions in perfiusion pressure. Circ Res 1985;56:517–524.

    Article  PubMed  CAS  Google Scholar 

  48. Hanley FL, Messina LM, Baer RW, Uhlig PN, Hoffman JIE. Direct measurement of left ventricular interstitial adenosine. Am J Physiol 1983;245:H327-H335.

    Google Scholar 

  49. Kroll K, Feigl EO. Adenosine is unimportant in controlling coronary blood flow in unstressed dog hearts. Am J Physiol 1985;249:H1176–H1187.

    Google Scholar 

  50. Rossen JD, Oskarsson H, Minor RL Jr, Talman CL, Winniford MD. Effect of adenosine antagonism on metabolically mediated coronary vasodilation in humans. J Am Coll Cardiol 1994;23:1421–1426.

    Article  PubMed  CAS  Google Scholar 

  51. Heusch G, Yoshimoto N. Effects of heart rate and perfusion pressure on segmental coronary resistances and collateral perfusion. Pfluegers Arch 1983;397:284–289.

    Article  CAS  Google Scholar 

  52. Heusch G, Yoshimoto N. Effects of cardiac contraction on segmental coronary resistances and collateral perfusion. Int J Microcirc 1983;2:131–141.

    CAS  Google Scholar 

  53. Bache RJ, Cobb FR. Effect of maximal coronary vasodilation on transmural myocardial perfusion during tachycardia in the awake dog. Circ Res 1977;41:648–653.

    Article  PubMed  CAS  Google Scholar 

  54. Ellis AK, Klocke FJ. Effects of preload on the transmural distribution of perfusion and pressure-flow relationships in the canine coronary vascular bed. Circ Res 1979;46:68–77.

    Article  Google Scholar 

  55. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of smooth muscle by acetylcholine. Nature 1980;288:373–376.

    Article  PubMed  CAS  Google Scholar 

  56. Myers PR, Banitt PF, Guerra R Jr, Harrison DG. Characteristics of canine coronary resistance arteries: importance of endothelium. Am J Physiol 1989;257.H603–H610.

    Google Scholar 

  57. Woodman OL, Dusting GJ. N-Nitro L-arginine causes coronary vasoconstriction and inhibits endothelium-dependent vasodilation in anaesthetized greyhounds. Br J Pharmacol 1991;103:1407–1410.

    Article  PubMed  CAS  Google Scholar 

  58. Ishizaka H, Okumura K, Yamabe H, Tsuchiya T, Yasue H. Endothelium-derived nitric oxide as a mediator of acetylcholine-induced coronary vasodilation in dogs. J Cardiovasc Pharmacol 1991;18:665–669.

    Article  PubMed  CAS  Google Scholar 

  59. Komaru T, Lamping KG, Eastham CL, Harrison DG, Marcus ML, Dellsperger KC. Effect of an arginine analogue on acetylcholine-induced dilatation of isolated coronary arterioles. Am J Phsyiol 1990;259:H1063–H1070.

    Google Scholar 

  60. Parent R, Paré R, Lavallée M. Contribution of nitric oxide to dilatation of resistance coronary vessels in conscious dogs. Am J Physiol 1992:262:H1O–H16.

    Google Scholar 

  61. Kuo L, Chilian WM, Davis MJ. Interaction of pressure- and flow-induced responses in porcine coronary resistance vessels. Am J Physiol 1991;261:H1706-H1715.

    Google Scholar 

  62. Duncker DJ, Bache RJ. Inhibition of nitric oxide production aggravates myocardial hypoperfusion during exercise in the presence of a coronary artery stenosis. Circ Res 1994;74:629–640.

    Article  PubMed  CAS  Google Scholar 

  63. Dole WP, Montville WJ, Bishop VS. Dependency of myocardial reactive hyperemia on coronary artery pressure in the dog. Am J Physiol 1981;240: H709–H715.

    Google Scholar 

  64. Kelly KO, Gould KL. Coronary reactive hyperemia after brief occlusion and after deoxygenated perfusion. Cardiov Res 1981;15:615–622.

    Article  Google Scholar 

  65. Berne RM. Regulation of coronary blood flow. Prog Cardiovasc Dis 1975;18:105–21.

    Article  PubMed  Google Scholar 

  66. Downing SE, Chen V. Dissociation of adenosine from meabolic regulation of coronary flow in the lamb. Am J Physiol 1986;251:H40–H46.

    Google Scholar 

  67. Gewirtz H, Olsson RA, Most AS. Role of adenosine in mediating the coronary vasodilative response to acute hypoxia. Cardiov Res 1987;21:81–89.

    Article  CAS  Google Scholar 

  68. Dole WP, Yamada N, Bishop VS, Olsson RA. Role of adenosine in coronary blood flow regulation after reductions in perfusion pressure. Cir Res 1985;56:517–524.

    Article  CAS  Google Scholar 

  69. Hanley FL, Grattan MT, Stevens MB, Hoffman JIE. Role of adenosine in coronary autoregulation. Am J Physiol 1986;250:H558–H566.

    Google Scholar 

  70. Dole WP, Nuno DW: Myocardial oxygen tension determines the degree and pressure range of coronary autoregulation. Circ Res 1986;59:202–215.

    Article  PubMed  CAS  Google Scholar 

  71. Downey HF, Crystal GJ, Bockman EL, Bashour FA. Nonischemic myocardial hypoxia: coronary dilatation without increased tissue adenosine. Am J Physiol 1982:243:H512–H516.

    Google Scholar 

  72. Gorman MW, Sparks HV. progressive coronary vasoconstriction during relative ischemia in canine myocardium. Circ Res 1982;51:411–420.

    Article  PubMed  CAS  Google Scholar 

  73. Pantely GA, Bristow JD, Swenson LJ, Ladley HD, Johnson WB, Anselone CG. Incomplete coronary vasodilation during myocardial ischemia in swine. Am J Physiol 1985:249:H638–H647.

    Google Scholar 

  74. Canty JM, Klocke F. Reduced regional myocardial perfusion in the presence of pharmacologic vasodilator reserve. Circulation 1985;71:370–377.

    Article  PubMed  Google Scholar 

  75. Aversano T, Becker LC. Persistence of coronary vasodilator reserve despite functionally significant flow reduction. Am J Physiol 1985;248:H403–H411.

    Google Scholar 

  76. Grattan MT, Hanley FL, Stevens MB, Hoffman JIE. Transmural coronary flow reserve patterns in dogs. Am J Physiol 1986;250:H276–H283.

    Google Scholar 

  77. Laxson DD, Dai XZ, Homans DC, Bache RJ. Coronary vasodilator reserve in ischemic myocardium of the exercising dog. Circulation 1992;85:313–322.

    Article  PubMed  CAS  Google Scholar 

  78. Heusch G, Deussen A. The effects of cardiac sympathetic nerve stimulation on the perfusion of stenotic coronary arteries in the dog. Circ Res 1983;53:8–15.

    Article  PubMed  CAS  Google Scholar 

  79. Seitelberger R, Guth BD, Heusch G, Lee JD, Katayama K, Ross J. Intracoronary oc2adrenergic receptor blockade attenuates ischemia in conscious dogs during exercise. Circ Res 1988;62:436–442.

    Article  PubMed  CAS  Google Scholar 

  80. Laxson DD, Dai X-Z, Homans DC, Bache RJ. The role of oc1- and oc2-adrenergic receptors in mediation of coronary vasoconstriction in hypoperfused ischemic myocardium during exercise. Circ Res 1989;65:1688–1697.

    Article  PubMed  CAS  Google Scholar 

  81. Bache RJ, Dai X-Z. The thromboxane A2 mimetic, U46619, worsens myocardial hypoperfusion during exercise in the presence of a coronary artery stenosis. Cardiovasc Res 1992;26:351–356.

    Article  PubMed  CAS  Google Scholar 

  82. Laxson DD, Homans DC, Bache RJ. Inhibition of adenosine-mediated coronary vasodilation exacerbates myocardial ischemia during exercise. Am J Physiol 1993; 265:H1471–H1477.

    Google Scholar 

  83. Gorman MW, Sparks HV Jr. Progressive vasoconstriction during relative ischemia in canine myocardium. Cir Res 1982;51:411–420.

    Article  CAS  Google Scholar 

  84. Parodi O, Sambucetti G, Roghi A, Testa R, Inglese E, Pirelli S, Spinelli F, Campolo L, L’Abbate A. Residual coronary reserve despite decreased resting blood flow in patients with critical coronary lesions. A study by technetium-99m human albumin microsphere myocardial scintigraphy. Circulation 1993;87:330–344.

    Article  PubMed  CAS  Google Scholar 

  85. Canty JM, Smith TP Jr. Adenosine-recruitable flow reserve in absent during myocardial ischemia in unanesthetized dogs studied in the basal state. Circ Res 1995; 76:1079–1087.

    Article  PubMed  Google Scholar 

  86. Serruys PW, Di Mario C, Meneveau N, de Jaegere P, Strikwerda S, de Feyter PJ, Emanuelsson H. Intracoronary pressure and flow velocity from sensor tip guide wires. A new methodological comprehensive approach for the assessment of coronary hemodynamics before and after interventions. Am J Cardiol 1993;71:41D–53D.

    Article  Google Scholar 

  87. Sambucetti G, Marzullo P, Giorgetti A, Neglia D, Marzilli M, Salvadori P, L’Abbate A, Parodi O. Global alteration in perfusion response to increasing oxygen consumption in patients with single-vessel coronary artery disease. Circulation 1994;90:1696–1705.

    Article  Google Scholar 

  88. Gould KL, Kirkeeide RL, Buchi M. Coronary flow reserve as a physiological measure of stenosis severity. J Am Coll Cardiol 1990;15:459:474.

    Google Scholar 

  89. Pijls NHJ, Van Son JAM, Kirkeeide RL, De Bruyne B, Gould KL. Experimental basis of determining maximum coronary myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after PTCA. Circulation 1993;87:1354–1367.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pijls, N.H.J., De Bruyne, B. (1997). The Coronary Circulation. In: Coronary Pressure. Developments in Cardiovascular Medicine, vol 195. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8834-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8834-8_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-8836-2

  • Online ISBN: 978-94-015-8834-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics