Skip to main content

Single-Wafer Process Integration and Process Control Techniques

  • Chapter
Advances in Rapid Thermal and Integrated Processing

Part of the book series: NATO ASI Series ((NSSE,volume 318))

Abstract

State-of-the-art semiconductor technologies employ thermal processing steps for various anneal, oxidation, and chemical vapor deposition (CVD) processes. Most of these fabrication processes have been dominated by hot-wall batch furnaces. Many other unit processes, however, are already performed in single-wafer processors. These include plasma etch, plasma-enhanced dielectric deposition, metal deposition, ion implantation, and microlithography. The advantages of single-wafer processing have been discussed elsewhere [1]. They have been primarily related to enhanced control of processing individual wafers, particularly as the diameter of silicon wafers has increased to 200 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moslehi, M., Chapman, R., Wong, M., Paranjpe, A., Najm, H., Kuehne, J., Yeakley, R., and Davis, C. (1992) Single-wafer integrated semiconductor device processing, IEEE Trans. on Electron Devices 39, pp. 4–32.

    Article  ADS  Google Scholar 

  2. Moslehi, M., Paranjpe, A., Velo, L., and Kuehne, J., (May 1994) RTP: Key to future semiconductor fabrication, Solid State Technol. 37, pp. 37–45.

    Article  ADS  Google Scholar 

  3. Saraswat, K., Apte, P., Booth, L, Chen, Y., Dankoski, P., Levent Degertekin F., Franklin, G., Khuri-Yakub, B., Moslehi, M., Schaper, C., Gyugyi, P., Lee, Y., Pei, J., and Wood, S. (1994) Rapid thermal multiprocessing for a programmable factory for adaptable manufacturing of IC’s, IEEE Trans. on Semiconductor Manufacturing 7, pp. 159–175.

    Article  Google Scholar 

  4. Moslehi, M., Kuehne, J., Velo, L., Yin, D., Yeakley, D., Huang, S., Jucha, B., and Breedijk, T. (1992), RTP for advanced CMOS process integration, in M. Moslehi, R. Singh, and D. Kwong (eds.), Rapid Thermal and Integrated Processing. SPIE Proc. 1595, San Jose, CA, pp. 132–145.

    Chapter  Google Scholar 

  5. Moslehi, M., Velo, L., Najm, H., Breedijk, T., Dostalik, B., Meyer, R., Paranjpe, A., Davis, C., and Schaper, C. (1992) Sensor fusion for ULSI manufacturing process control, Symp. on VLSI Technol. Dig. Tech. Papers, pp. 50–51.

    Google Scholar 

  6. Nulman, J., Cohen, B., Blonigan, W., Antonio, S., Meinecke, R., and Gat, A., (1989) Pyrometric emissivity measurements and compensation in an RTP chamber, in D. Hodul et al. (eds.), Rapid Thermal Annealing/Chemical Vapor Deposition and Integrated Processing, Mater. Res. Soc. Symp. Proc. 146, pp. 461–466.

    Google Scholar 

  7. Roozeboom, F., (1993) Manufacturing equipment issues in rapid thermal processing, in R.B. Fair (editor), Rapid Thermal Processing Science and Technology, Academic Press, San Diego, pp. 349–423.

    Chapter  Google Scholar 

  8. Wood, S., Apte, P., King, T., Moslehi, M., and Saraswat, K., (1990) Pyrometer modeling for rapid thermal processing, in R. Singh and M. Moslehi (eds.), Microelectronic Processing Integration, SPIE Proc. 1393, Santa Clara, CA, pp. 337–348.

    Google Scholar 

  9. Norman, S., Schaper, C., and Boyd, S., (1991) Improvement of temperature uniformity in rapid thermal processing systems using multivariable control, in Rapid Thermal and Integrated Processing, Mater. Res. Soc. Symp. Proc. 224, pp. 178–183.

    Google Scholar 

  10. Moslehi, M., Velo, L., Paranjpe, A., Kuehne, J., Huang, S., Chapman, R., Schaper, C., Breedijk, T., Najm, H., Yin, D., Lee, Y., Anderson, D., and Davis, C., (1994) Fast-cycle-time single-wafer IC manufacturing, Microelectronics Engineering 25, pp. 93–130.

    Article  Google Scholar 

  11. Spence, P., Schaper, C., and Kermani, A., (1995) Concurrent design of an RTP chamber and advanced control system, in S.R.J. Brueck et al. (eds.), Rapid Thermal and Integrated Procesing IV, Mat. Res. Soc. Symp. Proc. 387, pp. 75–86.

    Google Scholar 

  12. Pintchovski, F., (1994) Progression of multilevel metallization beyond 0.35 micron technology, International Electron Devices Meeting Technical Digest, pp. 97–100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Moslehi, M.M. et al. (1996). Single-Wafer Process Integration and Process Control Techniques. In: Roozeboom, F. (eds) Advances in Rapid Thermal and Integrated Processing. NATO ASI Series, vol 318. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8711-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8711-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4696-3

  • Online ISBN: 978-94-015-8711-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics