Skip to main content

Modeling Approaches for Rapid Thermal Chemical Vapor Deposition

Combining Transport Phenomena with Chemical Kinetics

  • Chapter
Advances in Rapid Thermal and Integrated Processing

Part of the book series: NATO ASI Series ((NSSE,volume 318))

Abstract

Chemical vapor deposition (CVD) performed in rapid thermal processing (RTP) chambers, also referred to as rapid thermal chemical vapor deposition (RTCVD), has been demonstrated for a wide range of typical microelectronics manufacturing processes [1], including growth of silicon [2], silicon oxide [3], and silicon nitride [4], as well as new processes, such as the growth of silicon germanium alloys [5]. These CVD systems share common features of gas-phase and surface reactions combined with fluid flow, heat transfer, and chemical species transport (cf. Figure 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Moslehi, R. Chapman, M. Wong, A. Paranjpe, H. Najm, J. Kuehne, R. Yeakley, and C. Davis, IEEE Trans. Electron Devices 39, 4 (1992).

    Article  ADS  Google Scholar 

  2. J.L. Regolini, D. Bensahel, and J. Mercier, J. Electron. Mater. 19, 1075 (1990).

    Google Scholar 

  3. X.L. Xu, R.T. Kuehn, J.J. Wortman, and M.C. Öztürk, Appl. Phys. Lett. 60, 3063 (1992).

    Article  ADS  Google Scholar 

  4. K. Ando, H. Watanabe, and H. Ono in R. B. Fair and B. Lojek (Eds.), Proceedings of the Second International Conference on RTP, Monterey, CA 1994 p. 65.

    Google Scholar 

  5. M.L. Green, D. Brasen, H. Luftman and V.C. Kannan, J. Appl. Phys. 65, 2558 (1989).

    Article  ADS  Google Scholar 

  6. C.R. Kleijn in M. Meyyappan, Computational Modeling in Semiconductor Processing (Artech House, Boston 1995) Ch. 4.

    Google Scholar 

  7. K.F. Jensen in M.L. Hitchman and K.F. Jensen, Chemical Vapor Deposition-Principles and Applications (Academic Press, London, 1993) Ch 2.

    Google Scholar 

  8. E.S. Oran and J.P. Boris, Prog. Energy Combust. Sci. 7, 1 (1981).

    Article  Google Scholar 

  9. O.C. Zienkowitz, The Finite Element Method (McGraw Hill, New York, 1977).

    Google Scholar 

  10. H.B. Keller in P. Rabnowitz (Ed.), Applications of bifurcation theory (Academic Press, New York, 1977) p. 359.

    Google Scholar 

  11. M. Ikegawa and J. Kobayashi, J. Electrochem. Soc. 136, 2982 (1989).

    Article  Google Scholar 

  12. T. Cale and G. Raupp, J. Vac. Sci. Technol. B 8, 1242 (1990).

    Article  Google Scholar 

  13. D.G. Coronell and K.F. Jensen, J. Electrochem. Soc. 139, 2264 (1992);

    Article  Google Scholar 

  14. D.G. Coronell and K.F. Jensen, J. Electrochem. Soc. 141, 2545 (1994);

    Article  Google Scholar 

  15. D.G. Coronell and K.F. Jensen, J. Computer-Aided Mats. Design 1, 3–26 (1993).

    Article  ADS  Google Scholar 

  16. R.B. Bird, W.E. Steward, and E.N. Lightfoot, Transport Phenomena, (Wiley, New York, 1960).

    Google Scholar 

  17. C.R. Kleijn, Th.H. van der Meer, and C.J. Hoogendoorn, J. Electrochem. Soc. 136, 3423 (1989).

    Article  Google Scholar 

  18. J.O. Hirschfelder, C.F. Curtiss, and R.B. Bird, Molecular Theory of Gases and Liquids (J. Wiley & Sons, New York, 1954).

    MATH  Google Scholar 

  19. T.P. Coffee and J.M. Meimerl, Combust. Flame 43 273 (1981).

    Article  Google Scholar 

  20. R.C. Reid, J.M. Prausnitz, and B.E. Poling, Properties of Gases and Liquids (McGraw-Hill, New York, 1987).

    Google Scholar 

  21. R.J. Kee, F.M. Rupley and J.A. Miller, The Chemkin Thermodynamic Data Base, Sandia Report SAND87–8215B (1991).

    Google Scholar 

  22. J. Bloem and L.J. Giling, Current Topics in Materials Science 1, 147 (1978).

    Google Scholar 

  23. P. Futerko and K.F. Jensen, J. Electrochemical Soc., submitted (1995).

    Google Scholar 

  24. J.W. Tilden, V. Costanza, G.J. McRae and J.H. Seinfeld in Modeling of Chemical Reaction Systems, edited by K.H. Ebert, P. Deuflhard and W. Juger (Springer-Verlag, Berlin, 1981) pp 6991.

    Google Scholar 

  25. H. Rabitz, Comput. Chem. 5, 167 (1981).

    Article  Google Scholar 

  26. W. C. Gardiner Jr. (Ed.) Combustion Chemistry, (Springer-Verlag, Berlin, 1984).

    Google Scholar 

  27. M.E. Coltrin, R.J. Kee, and G.H. Evans, J. Electrochem. Soc. 136, 819 (1989).

    Article  Google Scholar 

  28. M.E. Coltrin, R.J. Kee, and J.A. Miller, J. Electrochem. Soc. 131, 425 (1984);

    Article  Google Scholar 

  29. M.E. Coltrin, R.J. Kee, and J.A. Miller, J. Electrochem. Soc. 133, 1206 (1986).

    Article  Google Scholar 

  30. P. Ho and M.E. Coltrin, and W. G. Breiland, J. Phys. Chem. 98, 10138 (1994).

    Article  Google Scholar 

  31. J.M. Jasinski, R. Debecerra, and R. Walsh, Chem. Rev. 95, 1203 (1995).

    Article  Google Scholar 

  32. J.A. Dumesic, D.F. Rudd, L.M. Aparacio, J. Rekoske and A.A. Trevino, The Microkinetics Heterogeneous Catalysis, American Chemical Society, Washington, D.C. (1993).

    Google Scholar 

  33. W.G. Mallard, F. Westley, J.T. Hevron, R.F. Hampson and D.H. Frizzel, NIST Chemical Kinetics Database: Version 6.0, National Institute of Standards and Technology, Gaithersburg, MD (1994).

    Google Scholar 

  34. See, for example, K.J. Laidler, Chemical Kinetics, 3rd Ed., Harper and Row, New York (1987).

    Google Scholar 

  35. S.W. Benson, Thermochemical Kinetics, 2nd Ed., Wiley, New York, 1976.

    Google Scholar 

  36. W.J. Hehre, L. Radom, P.V.R. Schleyer and J.A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986.

    Google Scholar 

  37. J.J.P. Stewart, J. Comp. Chemistry 12 (1991) 320.

    Article  Google Scholar 

  38. M.J. Frisch, G.W. Trucks, M. Head-Gordon, P.M.W. Gill, M.W. Wong, J.B. Foresman, B.G. Johnson, H.B. Schlegel, M.A. Robb, E.S. Replogle, R. Gomperts, J.L. Andres, K. Raghavachari, J.S. Binkley, C. Gonzalez, R.L. Martin, D.J. Fox, D.J. Defrees, J. Baker, J.J.P. Stewart and J.A. Pople, Gaussian 92, Gaussian Inc., Pittsburgh, 1992.

    Google Scholar 

  39. T. Ziegler, Chem. Rev. 91, 651 (1991).

    Article  Google Scholar 

  40. J. Andzelm and E. Wimmer, J. Chem. Phys. 96 (1992) 1280.

    Article  ADS  Google Scholar 

  41. P. Ho, M.E. Coltrin, J.S. Binkley, and C.F. Melius, J. Phys. Chem. 89, 4647 (1985);

    Article  Google Scholar 

  42. P. Ho, M.E. Coltrin, J.S. Binkley, and C.F. Melius, J. Phys. Chem. 90, 3399 (1986).

    Article  Google Scholar 

  43. C.L. Darling and H.B. Schlegel, J. Phys. Chem. 97, 8207 (1993).

    Article  Google Scholar 

  44. M. Su and H.B. Schlegel, J. Phys. Chem. 97, 8732 (1993).

    Article  Google Scholar 

  45. D. J. Lucas, L.A. Curtiss, and J.A. Pople, J. Chem. Phys. 99, 6697 (1993).

    Article  ADS  Google Scholar 

  46. M.R. Zachariah and W. Tsang, J. Phys. Chem. 99, 5308 (1995).

    Article  Google Scholar 

  47. D.G. Truhlar, A.D. Isaacson and B.C. Garrett in Theory of Chemical Reaction Dynamics Vol. 4, edited by M. Baer, (CRC Press, Boca Raton, Florida, 1985) pp. 65–137.

    Google Scholar 

  48. H.K. Moffat, K.F. Jensen, and R.W. Carr, J. Phys. Chem. 96, 7695 (1992).

    Article  Google Scholar 

  49. R.G. Gilbert and S. C. Smith, Theory of Unimolecular and Recombination Reactions, Blackwell Scientific, Oxford, 1990.

    Google Scholar 

  50. P. R. Westmoreland, J. B. Howard, J. P. Longwell, and A. M. Dean, AIChE J. 32, 1971 (1986).

    Article  Google Scholar 

  51. S. M. Gates, C. M. Greenlief, S. K. Kulkarni, and H. H. Sawin, J. Vac. Sci. Technol. A 8, 2965 (1990).

    Article  ADS  Google Scholar 

  52. A. Goursot, I. Papai and D.R. Salahub, J. Am. Chem. Soc. 114, 7452 (1992).

    Article  Google Scholar 

  53. D. Tomanek, Z. Sun and S.G. Louie, Phys. Rev. B 43, 4699 (1991).

    Article  ADS  Google Scholar 

  54. M.A. Mendicino and E.G. Seebauer, J. Electrochem. Soc. 140, 1786 (1993).

    Article  Google Scholar 

  55. Y.F. Wang and R. Pollard, J. Electrochem. Soc. 142, 1713 (1995).

    Google Scholar 

  56. B.S. Meyerson, IBM J. Res. Dev. 34, 806 (1990).

    Article  Google Scholar 

  57. N.M. Russell and W.G. Breiland, J. Appl. Phys. 73, 3525 (1993).

    Article  ADS  Google Scholar 

  58. C.G. Newman, J. Dzarnoski, M.A. Ring and H.E. O’Neal, Int. J. Chem. Kin. 12, 661 (1980).

    Article  Google Scholar 

  59. V.N. Votintsev, I.S. Zaslonko, V.S. Mikheev and V.N. Smirnov, Kinetika y Kataliz 26, 1303 (1985).

    Google Scholar 

  60. M. Hierlemann, H. Simka, K.F. Jensen and M. Utz, J. Electrochem. Soc., submitted (1995).

    Google Scholar 

  61. R.C. Binning and L.A. Curtiss, J. Chem. Phys. 92, 1860 (1990).

    Article  ADS  Google Scholar 

  62. R.C. Weast (Ed.), CRC Handbook of Physics and Chemistry, 73rd Ed., CRC Press, Boca Raton, Florida, 1993.

    Google Scholar 

  63. B. Ruscic, M. Schwarz and J. Berkowitz, J. Chem. Phys. 92, 1865 (1990).

    Article  ADS  Google Scholar 

  64. P.N. Noble and R. Walsh, Int. J. Chem. Kinetics 15, 547 (1983).

    Article  Google Scholar 

  65. B.S. Agrawala and D.W. Setser, J. Chem. Phys. 86, 5421 (1987).

    Article  ADS  Google Scholar 

  66. K.L. Knutson, R.W. Carr, W.H. Liu and S.A. Campbell, J. Crystal Growth 140, 191 (1994).

    Article  ADS  Google Scholar 

  67. M. Hierlemann, A. Kersch, C. Werner, and H. Schafer, J. Electrochem. Soc. 142, 259 (1995).

    Article  Google Scholar 

  68. J.L. Regolini, D. Bensahel, J. Mercier and E. Scheid, J. Crystal Growth 96, 505 (1989).

    Article  ADS  Google Scholar 

  69. P. D. Agnello, T. O. Sedgwick, and J. Cotte, J. Electrochem. Soc. 140, 2703 (1993).

    Article  Google Scholar 

  70. D. D. Koleske, S. M. Gates, and D. B. Beach, J. Appl. Phys. 72, 4073 (1992).

    Article  ADS  Google Scholar 

  71. N. Maity, L.Q. Xia, and J.R. Engstrom, Appl. Phys. Lett. 66, 1909 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jensen, K.F., Simka, H., Mihopoulos, T.G., Futerko, P., Hierlemann, M. (1996). Modeling Approaches for Rapid Thermal Chemical Vapor Deposition. In: Roozeboom, F. (eds) Advances in Rapid Thermal and Integrated Processing. NATO ASI Series, vol 318. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8711-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8711-2_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4696-3

  • Online ISBN: 978-94-015-8711-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics