Skip to main content

Introduction: History and Perspectives of Rapid Thermal Processing

  • Chapter
Advances in Rapid Thermal and Integrated Processing

Part of the book series: NATO ASI Series ((NSSE,volume 318))

Abstract

Today, ULSI (ultra large scale integration) in silicon-based mass-produced integrated circuits (ICs) has its state-of-the-art representatives in microprocessors such as Intel’s Pentium or, even more powerful, the PowerPC, jointly designed by Apple, IBM and Motorola. Both products were originally designed in a 0.5 pm, 3.3 Volt CMOS (complimentary metal oxide semiconductor) technology. The Power PC contains 3.6 million transistors onto a chip, measuring 196 mm2 [1]. In the course of 1995 the line width has been further reduced to 0.35 pm for the development of processors with some 5 metal levels, such as the Pentium Pro (or P6) processor, as part of a series of continuously shrinking microelectronics, which started after the first planar single transistor in 1959 [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.H. Singer, Semicond. Int. 17 (12), 17 (1994).

    Google Scholar 

  2. For a comprehensive review of the history of the single planar transistor to contemporary ICs, see: 40th Anniversary of the Int. Electron Devices Meeting Technical Survey, Commemorative Edition, A. Lewis (editor), IEDM, October 1994.

    Google Scholar 

  3. G.E. Moore, Int. Electron Dev. Meeting Techn. Dig., 1975, p. 11.

    Google Scholar 

  4. The National Technology Roadmap for Semiconductors, Semiconductor Industry Association, San Jose (California), December 1994.

    Google Scholar 

  5. See for example Int. Electron Dev. Meeting Tech. Dig., 1993, in particular: Y. Taur et al., Int. Electron Dev. Meeting Tech. Dig., 1993, p. 127.

    Google Scholar 

  6. L.C. Parrillo, R.S. Payne, R.E. Davis, G.W. Reutlinger and R.L. Field, Int. Electron Dev. Meeting Techn. Dig. (1980) 752.

    Google Scholar 

  7. R. Singh, J. Appl. Phys. 63, R59 (1988).

    Article  ADS  Google Scholar 

  8. J.M. Fairfield and G.H. Schwuttke, Solid St. Electron. 11, 1175 (1968).

    Article  ADS  Google Scholar 

  9. B. Lojek, Mat. Res. Soc. Symp. Proc. 224, 33 (1991); see also Chapter 17 of this book.

    Article  Google Scholar 

  10. C.M. Osburn in Rapid Thermal Processing, Science and Technology, (R.B. Fair, editor), Academic Press, New York, 1993, p. 227.

    Chapter  Google Scholar 

  11. K. Maex, Chapter 12 of this book.

    Google Scholar 

  12. For a recent review see: G. Lucovsky, Y. Ma, S.V. Hattangady, D.R. Lee, Z. Lu, V. Misra, J.J. Wortman, Z. Jing, J.L. Whitten, Jpn. J. Appl. Phys. 33, 7061 (1994).

    Article  ADS  Google Scholar 

  13. M.L. Green, Chapter 7 of this book.

    Google Scholar 

  14. A. Slaoui, L. Ventura, A. Lachiq, R. Monna and J.C. Muller, Mat. Res. Soc. Symp. Proc. 387, 365 (1995).

    Article  Google Scholar 

  15. S.C. Sun, L.S. Wang, F.L. Yeh, Mat. Res. Soc. Symp. Proc. 387, 329 (1995).

    Article  Google Scholar 

  16. W.B. de Boer and R.H.J. van der Linden, Mat. Res. Soc. Symp. Proc. 387, 287 (1995).

    Article  Google Scholar 

  17. M.M. Moslehi, L. Velo, A. Paranjpe, J. Kuehne, S. Huang, R. Chapman, C. Schaper, T. Breedijk, H. Najm, D. Yin, Y.J. Lee, D. Anderson and C. Davis, Microelectr. Eng. 25, 93 (1994); see also Chapter 6 of this book.

    Article  Google Scholar 

  18. J.-L. Regolini, J. Margail, C. Morin, P. Gouy-Pailler, Mat. Res. Soc. Symp. Proc. 342, 249 (1994).

    Article  Google Scholar 

  19. A. Katz, A. Feingold, S.J. Pearton, S. Nakahara, M. Ellington, U.K. Chakrabarti, M. Geva and E. Lane, J. Appl. Phys. 70, 3666 (1991).

    Article  ADS  Google Scholar 

  20. T.O. Sedgwick, P.D. Agnello, M. Berkenblit and T.S. Kuan, J. Electrochem. Soc. 138, 3042 (1991).

    Article  Google Scholar 

  21. A. Katz, A. Feingold, S.J. Pearton, C.R. Abernathy, M. Geva and K.S. Jones, J. Vac. Sci. Technol. B9, 2466 (1991).

    Google Scholar 

  22. J.E. Fair, Solid St. Technol. 35 (8), 47 (1992).

    Google Scholar 

  23. R. Pascual, M. Sayer, C.V.R. Vasant Kumar and L. Zou, J. Appl. Phys. 70, 23 (1991).

    Google Scholar 

  24. F. Roozeboom and F.W.A. Dirne, J. Appl. Phys. 77, 5293 (1995); see also Chapter 19 of this book.

    Article  ADS  Google Scholar 

  25. H.A. Lord, IEEE Trans. Semicond. Manufact. 1, 105 (1988).

    Article  Google Scholar 

  26. J.M. Salzer, Solid St. Technol. 35 (5), 62 (1992)

    Google Scholar 

  27. J.M. Salzer, RTP 1995, Vol. 1: Companies, Products, Markets, Salzer Technology Enterprises, Santa Monica, 1995, USA.

    Google Scholar 

  28. Anonymous, Solid St. Technol. 38 (3), 18 (1995).

    Google Scholar 

  29. P. Burggraaf, Semicond. Int. 18 (5), 17 (1995)

    Google Scholar 

  30. C. Marsh, Solid St. Technol. 38 (9), 44 (1995).

    Google Scholar 

  31. M.J. Hart and A.G. Evans, Semicond. Sci. Technol. 3, 421 (1988).

    Article  ADS  Google Scholar 

  32. C. Hill, in Laser and Electron Beam Solid Interactions and Materials Processing (J . F. Gibbons, L.D. Hess and T.W. Sigmon, eds.), Elsevier North-Holland, New York, 1981, pp. 361–374.

    Google Scholar 

  33. C. Hill, S. Jones and D. Boys, in Reduced Thermal Processing for ULSI (R.A. Levy, ed.), pp. 143–180, Plenum Press, New York, 1989.

    Chapter  Google Scholar 

  34. F. Roozeboom in Rapid Thermal Processing, Science and Technology (R.B. Fair, editor), Academic Press, New York, 1993, pp. 349–423

    Chapter  Google Scholar 

  35. and references therein, such as: F. Roozeboom and N. Parekh, J. Vac. Sc. Technol. B8, 1249 (1990).

    Article  Google Scholar 

  36. F. Roozeboom, Mat. Res. Soc. Symp. Proc. 224, 9 (1991).

    Article  Google Scholar 

  37. F. Roozeboom, Semicond. Int. 14 (10), 74 (1991).

    Google Scholar 

  38. F. Roozeboom, Mat. Res. Soc. Symp. Proc. 303, 149 (1993).

    Article  Google Scholar 

  39. A.J. LaRocca in The infrared handbook (W.L. Wolfe and G.J. Zissis, eds.), revised 2nd edition, 3rd printing, Environmental Res. Inst. of Michigan, Ann Arbor, 1989, pp. 2.1–2.97.

    Google Scholar 

  40. R. Siegel and J.R. Howell, Thermal radiation heat transfer, 3rd edition, Hemisphere Publishing Corp., Washington, 1992.

    Google Scholar 

  41. T. Sato, Jpn. J. Appl. Phys. 6, 339 (1967).

    Article  ADS  Google Scholar 

  42. W. DeHart, Microelectr. Manufact. Technol. 14 (7), 44 (1991).

    Google Scholar 

  43. J. Nulman, Soc. Photo-Opt. Instrum. Eng. Symp. Proc. 1189, 72 (1989).

    Google Scholar 

  44. J. Nulman, B. Cohen, W. Blonigan, S. Antonio, R. Meinecke and A. Gat, Mat. Res. Soc. Symp. Proc. 146, 461 (1989).

    Article  Google Scholar 

  45. J. Nulman, S. Antonio and W. Blonigan, Appl. Phys. Left. 56, 2513 (1990).

    Article  ADS  Google Scholar 

  46. P. Vandenabeele, K. Maex and R. de Keersmaecker, Mat. Res. Soc. Symp. Proc. 146, 149 (1989).

    Article  Google Scholar 

  47. P. Vandenabeele and K. Maex, Soc. Photo-Opt. Instrum. Eng. Symp. Proc. 1189, 89 (1989).

    Google Scholar 

  48. J.C. Liao and T.I. Kamins, J. Appl. Phys. 67, 3848 (1990).

    Article  ADS  Google Scholar 

  49. D.W. Pettibone, J.R. Suarez and A. Gat, Mat. Res. Soc. Symp. Proc. 52, 209 (1986).

    Article  Google Scholar 

  50. P. Vandenabeele and K. Maex, Mat. Res. Soc. Symp. Proc. 224, 185 (1991).

    Article  Google Scholar 

  51. R. Kakoschke, Mat. Res. Soc. Symp. Proc. 224, 159 (1991).

    Article  Google Scholar 

  52. R. Kakoschke and E. Bussmann, Mat. Res. Soc. Symp. Proc. 146, 473 (1989).

    Article  Google Scholar 

  53. M.M. Chen, J.B. Berkowitz-Mattuck and P.E. Glaser, Appl. Optics 2, 265 (1963).

    Article  ADS  Google Scholar 

  54. R.E. Sheets, Nucl. Instrum. Meth. Phys. Res. B6, 219 (1985).

    ADS  Google Scholar 

  55. R.E. Sheets, Mat. Res. Soc. Symp. Proc. 52, 191 (1986).

    Article  Google Scholar 

  56. R.E. Sheets, US Patents 4 649 261 (10 March 1987) and 4 698 486 (6 Oct. 1987).

    Google Scholar 

  57. R.E. Bedford and C.K. Ma, J. Opt. Soc. Am. 64, 339 (1974).

    Article  ADS  Google Scholar 

  58. A. Gouffé, Revue d’optique 24, 1 (1945).

    Google Scholar 

  59. C. Lee and G. Chizinsky, Solid St. Technol. 32 (1), 43 (1989).

    Google Scholar 

  60. C. Lee, U.S. Patent 4 857 689 (15 Aug. 1989).

    Google Scholar 

  61. D.M. Camm and B. Lojek, Proc. 2nd Int. RTP Conference, RTP’94, Aug. 31-Sept. 2, 1994, Monterey, California, USA, p. 259.

    Google Scholar 

  62. G.E. Miner, C. Gronet, B. Peuse and J. Grilli, Proc. 2nd Int. RTP Conference, RTP’94, Aug. 31-Sept. 2, 1994, Monterey, California, USA, p. 94.

    Google Scholar 

  63. C.M. Gronet and G.E. Miner, European Patent 612 862 (31 Aug. 1994).

    Google Scholar 

  64. D.M. Camm, A. Kjørvel, N.P. Halpin and A.J.D. Housden, Eur. Patent 186 879 (9 July 1986); US Patent 4 700 102 (13 Oct. 1987).

    Google Scholar 

  65. J.C. Gelpey and P.O. Stump, Microelectron. Manufact. Test. 6, 22 (1983)

    Google Scholar 

  66. J.C. Gelpey and P.O. Stump, Nucl. Instrum. Meth. Phys. Res. B6, 316 (1985).

    ADS  Google Scholar 

  67. W.B. de Boer and A.E. Ozias, US Patent No. 4 821 674 (18 April 1989).

    Google Scholar 

  68. Anonymous, Solid St. Technol. 32 (11) , 55 (1989).

    Google Scholar 

  69. A. Katz and S.J. Pearton, J. Vac. Sc. Technol. B8, 1285 (1990).

    Article  Google Scholar 

  70. S.A. Campbell, K.-H. Ahn, K.L. Knutson, B.Y.H. Liu and J.D. Leighton, IEEE Trans. Semicond. Manuf. 4, 14 (1991).

    Article  Google Scholar 

  71. K.L. Knutson, S.A. Campbell and J.D. Leighton, Mat. Res. Soc. Symp. Proc. 224, 203 (1991).

    Article  Google Scholar 

  72. F.P. Incropera and D.P. DeWitt, Fundamentals of heat and mass transfer, J. Wiley, New York, 1990.

    Google Scholar 

  73. J. Giling, J. Electrochem. Soc. 129, 634 (1982).

    Article  Google Scholar 

  74. M.R. Leys, Chemtronics 2, 155 (1987).

    Google Scholar 

  75. C. van Opdorp and M.R. Leys, J. Cryst. Growth 84, 271 (1987).

    Article  ADS  Google Scholar 

  76. P. Vandenabeele, Rapid Thermal Processing: study of temperature nonuniformity and temperature measurement, Ph.D. thesis, Catholic University of Leuven, Belgium, November 1994.

    Google Scholar 

  77. A. Atanos and P. Rushbrook, Mat. Res. Soc. Symp. Proc. 429, in press (Proc. of Symp. on Rapid Thermal and Integrated Processing V, San Francisco, April 8–12, 1996, paper N2.2).

    Google Scholar 

  78. J.K. Elliot, L.F. Derks, J. Hoog and M. Whitlock, Proc. 3rd Int. RTP Conference, RTP’95, Aug. 30-Sept. 1, 1995, Amsterdam, The Netherlands, p. 334.

    Google Scholar 

  79. J.O. Dimmock, J. Electron. Mat. 1, 255 (1972).

    Article  ADS  Google Scholar 

  80. B. Brown, Proc. 9th European RTP Users Group Meeting, Harlow (UK), Jan. 29, 1992.

    Google Scholar 

  81. J.C. Chang, T. Nguyen, J.S. Nakos and J.W. Korejwa, Soc. Photo-Opt. Instrum. Eng. Symp. Proc. 1595, 35 (1991).

    Google Scholar 

  82. A.J. LaRocca in The infrared handbook (W.L. Wolfe and G.J. Zissis, eds.), revised 2nd edition, 3rd printing, Environmental Res. Inst. of Michigan, Ann Arbor, 1989, pp. 5.92–5.95.

    Google Scholar 

  83. F. Wong, C.Y. Chen and Y.-H. Ku, Mat. Res. Soc. Symp. Proc. 146, 27 (1989).

    Article  Google Scholar 

  84. L.R. Wollmann, Electro-opt. Syst. Des. 11 (9), 37 (1979).

    Google Scholar 

  85. J.-L. Regolini, D. Dutartre, D. Bensahel and J. Penelon, Solid St. Technol. 34 (2), 47 (1991).

    Google Scholar 

  86. S.R. Wilson, R.B. Gregory and W.M. Paulson, Mat. Res. Soc. Symp. Proc. 52, 181 (1986).

    Article  Google Scholar 

  87. F. Roozeboom and N. Parekh, J. Vac. Sc. Technol. B8, 1249 (1990).

    Article  Google Scholar 

  88. D.P. DeWitt and R.E. Rondeau, J. Thermophysics 3, 153 (1989).

    Article  ADS  Google Scholar 

  89. J.C. Sturm and A. Reddy, Mat. Res. Soc. Symp. Proc. 387, 137 (1995).

    Article  Google Scholar 

  90. F.G. Böbel, H. Möller, W. Preiss, Proc. IEEE/SEMI Advanced Semiconductor Manufacturing Conf., Oct. 19–20, 1993, Boston, p. 130.

    Google Scholar 

  91. F.G. Böbel, H. Möller, B. Hertel, G. Ritter and P. Chow, Solid St. Technol. 37(8), 55 (1994).

    Google Scholar 

  92. H. Möller, F.G. Böbel, B. Hertel, T. Lindenberg and G. Ritter, J. Cryst. Growth 157, 327 (1995).

    Article  Google Scholar 

  93. Y.J. Lee, C.H. Chou, B.T. Khuri-Yakub and K.C. Saraswat, Soc. Photo-Opt. Instrum. Eng. Symp. Proc. 1393, 366 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Roozeboom, F. (1996). Introduction: History and Perspectives of Rapid Thermal Processing. In: Roozeboom, F. (eds) Advances in Rapid Thermal and Integrated Processing. NATO ASI Series, vol 318. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8711-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8711-2_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4696-3

  • Online ISBN: 978-94-015-8711-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics