Skip to main content
  • 244 Accesses

Abstract

Some important bacterial genes are not located in the main chromosomal DNA but in independently replicating molecules of circular, double-stranded, ‘plasmid’ DNA. Such genes include those for antibiotic resistance, antibiotic synthesis, toxin production, nitrogen fixation, production of degradative enzymes, and conjugation; so plasmids are obviously of interest in their own right. However, in the context of this book, plasmids are mainly of interest as ‘vectors’ for the cloning of DNA molecules. As will be seen in chapters 11 and 12, it is possible to obtain large quantities of a particular DNA (e.g. cDNA — see Chapter 9) by inserting it into plasmid DNA, to give enlarged plasmids (‘vector’ plasmids) which can be introduced into a suitable host bacterium in which they will replicate. Culture of the cells will result in the production of more plasmid DNA, which can then be isolated from the cells and the inserted DNA recovered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Bolivar and K. Backman, ‘Plasmids of Escherichia colias cloning vectors’, Methods in Enzymology, 68 (1979), 245–67.

    Article  PubMed  CAS  Google Scholar 

  2. M. Kahn, R. Kolter, C. Thomas, D. Figurski, R. Meyer, E. Remaut and D.R. Helinski, ‘Plasmid cloning vehicles derived from plasmids ColE1, F, R6K, and RK2’, Methods in Enzymology, 68 (1979), 268–80.

    Article  PubMed  CAS  Google Scholar 

  3. R.W. Old and S.B. Primrose, Principles of gene manipulation. 2nd edn. Studies in microbiology, 2 (Blackwell, Oxford/University of California Press, Berkeley and Los Angeles, 1981), 33.

    Google Scholar 

  4. D.B. Clewell and D.R. Helinski, ‘Properties of a supercoiled deoxyribonucleic acid-protein relaxation complex and strand specificty of the relaxation event’, Biochemistry, 9 (1970), 4428–40.

    Article  PubMed  CAS  Google Scholar 

  5. M.V. Norgard, ‘Rapid and simple removal of contaminating RNA from plasmid DNA without the use of RNase’, Anal. Biochem., 113 (1981), 34–42.

    Article  PubMed  CAS  Google Scholar 

  6. H.C. Birnboim and J. Doly, ‘A rapid alkaline extraction procedure for screening recombinant plasmid DNA’, Nucleic Acids Res., 7 (1979), 1513–23.

    Article  PubMed  CAS  Google Scholar 

  7. D.S. Holmes and M. Quigley, A rapid boiling method for the preparation of bacterial plasmids. Anal. Biochem., 114 (1981), 193–7.

    Article  PubMed  CAS  Google Scholar 

  8. E. Layne, ‘Spectrophotometic and turbidimetric methods for measuring proteins’, Methods in Enzymology, 3 (1957), 447–54.

    Article  Google Scholar 

  9. Birnboim and Doly, ‘Rapid alkaline extraction’.

    Google Scholar 

  10. Norgard, ‘Rapid and simple removal of contaminating RNA’.

    Google Scholar 

  11. R.F. Schleif and P.C. Wensink, Practical methods in molecular Biology (Springer-Verlag, New York, 1981).

    Book  Google Scholar 

  12. Norgard, ‘Rapid and simple removal of contaminating RNA’.

    Google Scholar 

  13. J.R. Wells and C.F. Brunk, ‘Rapid CsCl gradients using a vertical rotor’, Anal. Biochem., 97 (1979), 196–201.

    Article  PubMed  CAS  Google Scholar 

  14. M. Fennewald, W. Prevatt, R. Meyer and J. Shapiro, ‘Isolation of Inc P-2 plasmid DNA from Pseudomonas aeruginosa’, Plasmid, 1 (1978), 164–73.

    Article  PubMed  CAS  Google Scholar 

  15. M. Shoyab and A. Sen, ‘The isolation of extrachromosomal DNA by hydroxyapatite chromatography’, Methods in Enzymology, 68 (1979), 199–206.

    Article  PubMed  CAS  Google Scholar 

  16. BDH, Poole, England, ‘Hydroxyapatite for nucleic acid work’, Applications pamphlet 1227MP/5.0/1079.

    Google Scholar 

  17. LKB, Bromma, Sweden, ‘HA-Ultrogel hydroxyapatite-agarose gel for adsorption chromatography’, Instruction Manual.

    Google Scholar 

  18. R.L. Pearson, J.F. Weissand A.D. Kelmers, ‘Improved separation of transfer RNAs on polychlorotrifluoroethylene-supported reversed-phase chromatography columns’, Biochim. Biophys. Acta, 228 (1971), 770–4.

    PubMed  CAS  Google Scholar 

  19. R.D. Wells, S.C. Hardies, G.T. Horn, B. Klein, J.E. Larson, S.K. Neuendorf, N. Panayotatos, R.K. Patient and E. Selsing, Methods in Enzymology, 65 (1980), 327–47.

    Article  PubMed  CAS  Google Scholar 

  20. Bethesda Research Laboratories Inc., Gaithersburg, USA, BRL Catalogue (1981), 86.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 John M. Walker and Wim Gaastra

About this chapter

Cite this chapter

Boffey, S.A. (1983). Plasmid Isolation. In: Walker, J.M., Gaastra, W. (eds) Techniques in Molecular Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6563-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6563-1_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7099-2755-6

  • Online ISBN: 978-94-011-6563-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics