Skip to main content

The Violation of the BCS Theory and the Extensions required to include the Effects of a nearby Phase Transition

  • Chapter
Physics and Materials Science of High Temperature Superconductors, IV

Part of the book series: NATO ASI Series ((ASHT,volume 26))

  • 202 Accesses

Abstract

While numerous experimental results support the conventional BCS electron-phonon mechanism, quite a number of specific data like the specific heat jump and the critical magnetic fields lie up to a factor of two above the predictions of the strong coupling BCS/Eliashberg theory using all of the experimental phonons. In particular the observed dependence of the electron-phonon matrix element on the vibrational amplitude for strong coupling superconductors violates the BCS theory. It is proposed to account for high temperature superconductivity in terms of a largely conventional BCS /Eliashberg-theory, extended to include additionally the effects of a nearby structural phase transition (SPT). Experimental data show that the SPT at the temperature Tp causes a resonance like enhancement of the phonon population numbers with energies near kBTp. In many respects, these additional vibrations of the SPT act like an additional broad phonon with an integrated intensity comparable to that of the narrow normal mode phonons. In addition in the HTS systems, there are several broad “phonons” associated with spatial gaps in the structure. These are the explanation for the “electronic” states in the gap. Hence in the calculation of the superconducting and thermodynamic quantities using the Eliashberg theory all of these have to be taken into account. The total phonon spectrum F(ε) includes the narrow regular normal mode phonons and these broad gap modes as evidenced by diffuse X-ray scattering. These additional phonons provide the factor of more than two in the measure of strength of the electron-phonon interaction A =∫α2F(ε)dε required to account for the Tc of the HTS and give the low value of λ ab = 1.4. The physical reasons for the choice of this ansatz are discussed. It corresponds to the Fröhlich /Weisskopf picture, extended by including the effect of a nearby SPT. The specific heat of the superconducting phase transition sits on the tail of that of the SPT. When this is allowed for, one obtains the expected exponential shape for s-wave superconductivity with a fitted scalar gap twice the value as calculated from Tc. The specific heat jump △Cp is due not only to the usual electronic part, but also to an ionic part of comparable magnitude. Hence the critical fields and the gap are also twice the BCS value as confirmed by data. Results are presented for the calculation of Tc and the isotope effect as function of the Sr-fraction for La-214 and as function of the oxygen content for Y-123 and are in good agreement with the data. The enhancement through the SPT leads to the coupling of the superconducting and the structural order parameters. The qualitative agreement of numerous further experimental data with the present ansatz confirms it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Imry, Y. J. Phys. C: Solid State Phys. 8 (1975) 567.

    Article  ADS  Google Scholar 

  2. Yurkevich, V.E., B.N. Rolov, and H.E. Stanley Ferroelectrics 16 (1977) 61.

    Article  Google Scholar 

  3. Haase, E.L. “Resonatingly Enhanced BCS Mechanism for High Te Superconductors” Talk at Nato ASI on High Temperature Superconductors III, (1994), Porto Carras, Greece, Manuscript available.

    Google Scholar 

  4. Haase, E.L., submitted to Int. Reviews of Mod. Phys. B.

    Google Scholar 

  5. Bardeen, J., L.N. Cooper. and J.R. Schrieffer Phys. Rev. 108 (1957) 1175.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Eliashberg, G.M. JETP 11 (1960) 696.

    Google Scholar 

  7. Eliashberg, G.M. JETP 12 (1961) 1000.

    Google Scholar 

  8. Tinkham, M. Physica C235–240(1994) 3.

    ADS  Google Scholar 

  9. Bulaevskii, L.N., V.L. Ginzburg, and A.A. Sobyanin Physica C152 (1988) 378.

    ADS  Google Scholar 

  10. Bulaevskii, L.N. Int. J. Mod. Phys. B4 (1990) 1849.

    ADS  Google Scholar 

  11. Kassan-Ogly, F.A. and V.E. Naish Acta Cryst. B42 (1986) 297, and the following three papers.

    Google Scholar 

  12. Schrieffer, J.R. (1992) The Physics of High Temperature Superconductors, in S. Maekawa and M. Sato eds. Springer Series in Solid-State Sciences, Springer, Berlin.

    Google Scholar 

  13. Frohlich, H. Adv. in Physics 3 (1954) 325, and R. Everard (1972), The Fröhlich Polaron Concept, in Polarons in Ionic Crystals and Polar Semiconductors, J. T. Devreese (4.), North-Holland, Amsterdam.

    Google Scholar 

  14. Weisskopf, V.F. Contemp. Phys. 22 (1981) 375.

    Article  ADS  Google Scholar 

  15. Toth, L.E., (1971) Transition Metals Carbides and Nitrides, Academic Press, New York.

    Google Scholar 

  16. Geballe, T.H., B.T. Matthias, J.P. Remeika, A.W. Clogston, et al. Physics 2 (1966) 293.

    Google Scholar 

  17. Abrikosov, A.A., Private Communication.

    Google Scholar 

  18. Junod, A. in D.M. Ginsberg ed. Physical Properties of High Temperature Superconductors II, World Scientific Publishers, Singapore, p. 13.

    Google Scholar 

  19. Braden, M. Physica C223 (1994) 396, also: Ph. D. Thesis, Köln University, FRG (1992).

    Google Scholar 

  20. Collings, E.W., J.C. Ho, and R.I. Jaffe Phys. Rev. B5 (1972) 4435.

    ADS  Google Scholar 

  21. Thouless, DJ. Phys. Rev. 117 (1960) 1256.

    Article  ADS  Google Scholar 

  22. Ashauer, B., W. Lee, and J. Ramer Z. Phys. B67 (1987) 147.

    Article  ADS  Google Scholar 

  23. Wade, J.M., J.W. Loram, K.A. Mirza, J.R. Cooper, and J.L. Talion J. Supercond. 7 (1994) 261.

    Article  ADS  Google Scholar 

  24. Loram, J.W., K.A. Mirza, J.R. Cooper, W.Y. Liang, and J.M. Wade J. Supercond. 7 (1994) 243.

    Article  ADS  Google Scholar 

  25. Loram, J.W., K.A. Mirza, J.M. Wade, J.R. Cooper, and W.Y. Liang Physica C235–240 (1994) 134.

    Google Scholar 

  26. Abrikosov, A.A. Physica C233 (1994) 102.

    ADS  Google Scholar 

  27. Crespi, V.H. and M.L. Cohen Phys. Rev. B44 (1991) 4712, and further work by M. L. Cohen et al.

    Google Scholar 

  28. Newns, D.M., C.C. Tsuei, R.P. Huebener, P.J.M. van Bentum, et al. Phys. Rev. Lett. 73 (1994) 1695, and references quoted therein.

    ADS  Google Scholar 

  29. Rainer, D. and G. Bergmann J. Low Temp. Phys. 14 (1974) 501.

    Article  ADS  Google Scholar 

  30. Bergmann, G. and D. Rainer Z. Physik 263 (1973) 59.

    Article  ADS  Google Scholar 

  31. Schilling, J. and S. Klotz (1992) in D.M. Ginsberg ed. Physical Properties of HTS III, World Scientific Publishers, Singapore, p. 59.

    Google Scholar 

  32. Devlin, G.E. and E. Corenzwit Phys. Rev. 120 (1960) 1964.

    Article  ADS  Google Scholar 

  33. Fisk, Z. and A.C. Lawson Solid State Comm. 13 (1973) 277.

    Article  ADS  Google Scholar 

  34. Rainer, D., Physics Dept., University of Bayreuth, FRG.

    Google Scholar 

  35. Carbotte, J.P. Rev. Mod. Phys. 62 (1990) 1027.

    Article  ADS  Google Scholar 

  36. Balster, H. and J. Wittig J. Low Temp. Phys. 21 (1975) 377.

    Article  ADS  Google Scholar 

  37. Woodard, D.W. and G.D. Cody Phys. Rev. A136 (1964) 166.

    Article  ADS  Google Scholar 

  38. Skoskiewicz, T. and B. Baranowsky phys. star. sol. 30 (1968) K33.

    Article  ADS  Google Scholar 

  39. Nace, D.M. and J.G. Aston J. Amer. Chem. Soc. 79 (1957) 3623.

    Article  Google Scholar 

  40. Parks, R.D. (1971) Magnetism and Magnetic Materials in C.D. Graham, Jr. and JJ. Rhyne eds. Magnetism and Magnetic Materials,AIP Conf. Proc. Vol. 5.

    Google Scholar 

  41. Braden, M., W. Schnelle, W. Schwarz, N. Pyka, et al. Z. Physik B94 (1994) 29.

    ADS  Google Scholar 

  42. Haase, E.L. and J. Ruzicka (1991) Quality Criteria for High Tc Superconductors in R. Kossowsky ed. Proc. Nato ASI, Kluwer Press, NATO ASI Series E209.

    Google Scholar 

  43. Poppe, U. J. Appl. Phys. 77 (1991) 5572.

    Google Scholar 

  44. Ahmad, T., F.A. Khwaja, S.M. Yousaf, and Z. Ahmad (1995) in Proc. 4th Int. Symp. Adv. Mater., A. ul Haq et al., eds, A. Q. Khan Res. Labs., Kahuta, Pakistan.

    Google Scholar 

  45. Wright, D.A. Physica C185 (1991) 1387.

    ADS  Google Scholar 

  46. Amador, U., A. Várez, E. Morán, and M.A. Alano-Franco Solid State Ionics 63–65 (1993) 518.

    Article  Google Scholar 

  47. Subbarao, E.C. J. Amer. Ceram. Soc. 45 (1962) 166.

    Article  Google Scholar 

  48. Bogatko, V.V. and Y.N. Venevtsev Soy. Phys. Solid State 25 (1983) 859.

    Google Scholar 

  49. Landolt-Börnstein, Ser. III on Ferroelectrics 16+28 (1981, 1990) Springer Verlag, Berlin.

    Google Scholar 

  50. Barker, A.S. and J.J. Hopfield Phys. Rev. 135 (1964) A1732.

    Article  ADS  Google Scholar 

  51. Bums, G. and F.H. Dacol Solid State Commun. 18 (1976) 1325.

    Article  ADS  Google Scholar 

  52. Tajima, S. Phys. Rev. B48 (1993) 16164.

    ADS  Google Scholar 

  53. Malozovsky, Y.M., S.M. Bose, P. Longe, and J.D. Fan Phys. Rev. B48 (1993) 10504.

    ADS  Google Scholar 

  54. Boekholt, M., M. Hoffmann and G. Güntherodt Physica C175 (1991) 127.

    ADS  Google Scholar 

  55. Deutscher, G., N. Hass, Y. Yagil, A. Revcolevschi, and G. Dhalenne J. Supercond. 7 (1994) 371.

    Article  ADS  Google Scholar 

  56. Ekino, T. and J. Akimitsu Phys. Rev. B42 (1990) 8049.

    ADS  Google Scholar 

  57. Yagil, Y., N. Hass, G. Desgardin, and I. Monot Physica C250 (1995) 59.

    ADS  Google Scholar 

  58. Ekino, T. Physica C205 (1993) 338.

    ADS  Google Scholar 

  59. Briceno, G. and A. Zettl Solid State Comm . 70 (1989) 1055.

    Article  ADS  Google Scholar 

  60. Cooper, S.L., D. Reznik, A. Kotz, M.A. Karlow, et al . Phys. Rev . B47 (1993) 8233.’

    ADS  Google Scholar 

  61. Marchenko, V.A. Soy. Phys. Solid State 15 (1973) 1261.

    Google Scholar 

  62. Sugai, S., T. Ido, H. Takagi, S. Uchida, et al.Solid State Comm 76 (1990) 365.

    Article  ADS  Google Scholar 

  63. Orenstein, J., G.A. Thomas, AJ. Millis, S.L. Cooper, et al.Phys. Rev .B42 (1990) 6342.

    ADS  Google Scholar 

  64. Batlogg, B., H.Y. Hwang, H. Takagi, RJ. Cava, et al .Physica C235–240 (1994) 130.

    Google Scholar 

  65. Schoenes, J., E. Kaldis, and J. Karpinsky J. of the Less-Common Metals 164–165 (1990) 50.

    Google Scholar 

  66. Löhle, J., J. Schoenes, A. Morawski, J. Karpinski, and P. Wachter Physica B223–224 (1996) 512.

    Google Scholar 

  67. Chen, X.K., E. Altendorf, J.C. Irwin, R. Liang, and W.N. Hamy Phys. Rev.B48 (1993) 10530.

    ADS  Google Scholar 

  68. Chen, X.K., R. Liang, W.N. Hardy, and J.C. Irwin J. Superconductivity 7 (1994) 435.

    Article  ADS  Google Scholar 

  69. Slakey, F., M.V. Klein, J.P. Rice, and D.M. Ginsberg Phys. Rev.B42 (1990) 2643.

    ADS  Google Scholar 

  70. Sageev Grader, G., P.K. Gallagher, and E.M. Gyorgy Appl. Phys. Lett.51 (1987) 1115.

    Article  ADS  Google Scholar 

  71. Lin, S.T., J.Y. Jih, and K.F. Pai J. Mater. Science 25 (1990) 1037.

    Article  Google Scholar 

  72. White, G.K., S J. Collocott, R. Driver, R.B. Roberts, and A.M. Stewart J. Phys.C21 (1988) L631.

    ADS  Google Scholar 

  73. Mizusaki, J., H. Tagawa, K. Hayakawa, and K. Hirano J. Am. Ceram.Soc.78(1995) 1781.

    Article  Google Scholar 

  74. Reedyk, M. and T. Timusk Phys. Rev. Lett. 69 (1992) 2705.

    Article  ADS  Google Scholar 

  75. Shibauchi, T., H. Kitano, A. Maeda, T. Tamegai, et al.Physica C235–240 (1994) 1819.

    Google Scholar 

  76. Kassan-Ogly, F.A., V.Y. Naysh, and Y.E. Turkhan Phys. Met. Metall.65 (1988) 16.

    Google Scholar 

  77. Tamasaku, K., Y. Nakamura, and S. Uchida Phys. Rev.Leu.69 (1992) 1455.

    Article  ADS  Google Scholar 

  78. Chen, X.K., J.C. Irvin, HJ. Trodahl, T. Kimura, and K. Kishio Phys. Rev. Lett.73 (1994) 3290.

    Article  ADS  Google Scholar 

  79. Radaelli, P.G., D.G. Hinks, A.W. Mitchell, B.A. Hunter, et al Phys. Rev. B49 (1994) 4163.

    ADS  Google Scholar 

  80. Li, Q., M. Suenaga, T. Kimura, and K. Kioshio Phys. Rev. B47 (1993) 11384.

    ADS  Google Scholar 

  81. Momono, N. and M. Ido Physica C264 (1996) 311.

    ADS  Google Scholar 

  82. Tinkham, M., (1996) Introduction to Superconductivity, McGraw-Hill, Inc., New York.

    Google Scholar 

  83. Wilson, A.H. (1965) The Theory of Metals, Cambridge Univ. Press, Cambridge, p. 182.

    Google Scholar 

  84. Genzel, L., A. Wittlin, M. Bauer, M. Cardona, et al.Phys. Rev.B40(1989) 2170.

    ADS  Google Scholar 

  85. Zetterer, T., M. Franz, J. Schutzmann, W. Ose, et al . Phys. Rev . B41 (1990) 9499.

    ADS  Google Scholar 

  86. Frieda, B., C. Thomsen, H.-U. Habermeier, and M. Cardona Solid State Comm. 78 (1991) 291.

    Article  ADS  Google Scholar 

  87. Grittier, B., E. Salje, P. Freeman, J. Blunt, et al . J. Phys . 2 (1990) 8977.

    Google Scholar 

  88. Salje, E. Phil. Mag. Lett. 62 (1990) 277.

    Article  ADS  Google Scholar 

  89. Braun, E., W. Schnelle, H. Broicher, J. Harnischmacher, and D. Wohlleben Z. Physik B84 (1991) 333.

    ADS  Google Scholar 

  90. Stanley, H.E., (1971) Introduct. Phase Transitions and Critical Phenomena, Clarendon Press, Oxford.

    Google Scholar 

  91. Salje, E.K.H., (1990) Phase Transitions in Ferroelastic and Co-Elastic Crystals, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  92. Cao, G., J.W. O’Reilly, J.E. Crow, and L.R. Testardi Phys. Rev . B47 (1993) 11510.

    ADS  Google Scholar 

  93. Naish, V.E., T.V. Novoselova, and L.V. Sagaradze Phys. Met. Metall . 77 (1994) 479.

    Google Scholar 

  94. Sooryakumar, R. and M.V. Klein Phys. Rev. Lett. 45 (1980) 660, and the following Letter by C. A. Balseiro and L. M. Falicov, ibid. p. 662, also Phys. Rev. B23 (1981) 3213.

    Google Scholar 

  95. Isaacs, E.D., G. Aeppli, P. Zschack, S.-W. Cheong, et al . Phys. Rev. Lett . 72 (1994) 3421.

    Article  ADS  Google Scholar 

  96. Kassan-Ogly, F.A., V.E. Naish, and I.V. Sagaradze Superconductivity 3 (1990) 774.

    Google Scholar 

  97. Plakhty, V.P., Y.P. Chernenkov, V.I. Fedorov, A.B. Stratilatov, et al . Solid State Comm . 73 (1990) 225.

    Article  ADS  Google Scholar 

  98. Grebennikov, V.I. and V.Y. Naysh Phys. Met. Metall . 71 (1991) 124.

    Google Scholar 

  99. Ishibashi, Y. and I. Suzuki J. Phys.Soc.Japan 53 (1984) 903.

    Article  ADS  Google Scholar 

  100. Salje, E.K.H., B. Wruck, and H. Thomas Z. Phys . B82 (1991) 399.

    Article  ADS  Google Scholar 

  101. Takahashi, H., H. Shaked, B.A. Hunter, P.G. Radaelli, et al . Phys. Rev . B50 (1994) 3221.

    ADS  Google Scholar 

  102. Keane, D.T., G.A. Held, J.L. Jordan-Sweet, M.W. Shafer, et al . Physica C153–155 (1988) 594.

    Google Scholar 

  103. Kaldis, E., P. Fischer, A.W. Hewat, E.A. Hewat, et al . Physica C159 (1989) 668.

    ADS  Google Scholar 

  104. Meingast, C., O. Kraut, T. Wolf, H. Wuhl, et al Phys. Rev. Lett. 67 (1991) 1634.

    Article  ADS  Google Scholar 

  105. Klein, U. and F. Schwabl Physica B106 (1981) 227.

    Google Scholar 

  106. Ting, W., K. Fossheim, and T. Lægreid Solid State Comm. 75 (1990) 727.

    Article  ADS  Google Scholar 

  107. Sahu, D. and T.F. George Solid State Comm. 65 (1988) 1371.

    Article  ADS  Google Scholar 

  108. Migliori, A., J.L. Sarrao, W.M. Visscher, T.M. Bell, et al. Physica)B183 (1993) 1.

    ADS  Google Scholar 

  109. Gorkov, L.P. JETP 36 (1959) 1364.

    Google Scholar 

  110. Franck, J.P. and D.D. Lawrie Physica C235–240 (1994) 1503, and J. Superconductivity 8 (1995) 591.

    Google Scholar 

  111. Loram, W., K.A. Mirza, and P.F. Freeman Physica C171 (1990) 243.

    ADS  Google Scholar 

  112. Kinoshita, K. and T. Yamada Nature 357 (1992) 313.

    Article  ADS  Google Scholar 

  113. Rukang, L., R.K. Kremer, and J. Maier J. Solid State Chem . 105 (1993) 609.

    Article  ADS  Google Scholar 

  114. Schneider, T. and H. Keller Phys. Rev. Lett. 69 (1992) 3374.

    Article  ADS  Google Scholar 

  115. Bussmann-Holder, A. and A.R. Bishop, Z. Physik B86 (1992) 183.

    ADS  Google Scholar 

  116. Basov, D., N. R. Liang, B. Dabrowski, D. A. Bonn, W. N. Hardy, et al . Phys. Rev. Lett . 77 (1996) 4090.

    Article  ADS  Google Scholar 

  117. Liang, W. Y., J. W. Loram, K. A. Mirza, N. Athanassopoulou and J. R. Cooper Physica C263 (1996) 277.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Haase, E.L. (1997). The Violation of the BCS Theory and the Extensions required to include the Effects of a nearby Phase Transition. In: Kossowsky, R., Jelinek, M., Novak, J. (eds) Physics and Materials Science of High Temperature Superconductors, IV. NATO ASI Series, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5732-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5732-2_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6417-0

  • Online ISBN: 978-94-011-5732-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics