Skip to main content

Can We Achieve High In-Field Jc at 77 K in Bi-Sr-Ca-Cu-O?

A Challenge to Materials Scientists and Engineers

  • Chapter
Physics and Materials Science of High Temperature Superconductors, IV

Part of the book series: NATO ASI Series ((ASHT,volume 26))

  • 194 Accesses

Abstract

The critical current density of Bi-Sr-Ca-Cu-O (BSCCO) at 77 K has reached the order of 104 A/cm2, but it is rapidly reduced to less than 1000 A/cm2 at even small applied field (< 0.5 T). The mechanism responsible for such a behavior has been identified as a 3D to 2D vortex crossover that is directly related to the distance between the conduction Cu-O bilayers. For BSCCO, the bilayer distance is relatively large compared to that of YBa2Cu3Ox, and thus it has a lower crossover temperature and field. Although great attempt has been made to increase flux pinning by introduction of defects, the enhancement is only seen at low temperatures. This study presents a possible approach in flux pining of highly anisotropic high-Ta superconductors. In contrast to the previous effort in pinning of the 2D vortices, it is proposed to increase the Cu-O bilayer coupling strength by a unique processing method. Some experimental evidence suggests that the local lattice distortion can cause a slight reduction in bilayer distance. Since the Josephson coupling is related to the bilayer spacing, the coupling strength is enhanced leading to an increased 3D to 2D crossover temperature and field. As a consequence, the vortex state will remain 3D in a greater T-H region where pinning can be much more effective. Both theoretical discussions and experimental results on the new approach are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Z. J. J. Stekly and E. Gregory, Chapter on Applications of A-15 S. C., “Intermetallic Compounds Principles and Practics,” eds. J. H. Westbrook and R. L. Fleisher, J. Wiley & Sons, New York (1994).

    Google Scholar 

  2. D. Shi, “Properties and Defects of Type II Superconductors,” MRS Bulletin Vol. XVI, 37 (1991).

    Google Scholar 

  3. T. P. Orlando, E. J. McNiff, S. Foner, and M. R. Beasley, Phys. Rev. B. 19 4545 (1979)

    Article  ADS  Google Scholar 

  4. Z. J. J. Stekly and E. Gregory, “High Temperature Superconducting Materials Science and Engineering,” (ed D. Shi, Pergamon, Oxford) p. 444, 1995.

    Google Scholar 

  5. J. G. Bednorz and K. A. Mueller, Phys. Rev. B, 64 189 (1986).

    Google Scholar 

  6. K. Wu et al., Phys. Rev. Lett. 58 908 (1987).

    Article  ADS  Google Scholar 

  7. H. Maeda, Y. Tanaka, M. Fukutomi and T. Asano, Jpn. J. Appl. Phys. 27 209 (1988).

    Article  ADS  Google Scholar 

  8. Z. Z. Sheng and A. M. Hermann, Nature 332 138 (1987).

    Article  ADS  Google Scholar 

  9. U. Welp, W. Kwok, G. W. Crabtree, K. Vandervoort, and J. Z. Liu, Phys. Rev. Lett., 62 1908 (1989).

    Article  ADS  Google Scholar 

  10. R. J. Cava, et al., Phys. Rev. Lett. 58, 1676 (1987).

    Article  ADS  Google Scholar 

  11. J. W. Ekin, Adv. Cer. Mater. 2, 586 (1987).

    Google Scholar 

  12. D. Shi et al., Appl. Phys. Lett., 57 2606,(1990).

    Article  ADS  Google Scholar 

  13. K. Salama and D. F. Lee, Supercon. Sci. Technol. 7, 177 (1994).

    Article  ADS  Google Scholar 

  14. P. G. McGinn et al. Appl. Phys. Lett. 57 1455 (1990).

    Article  ADS  Google Scholar 

  15. R. L. Meng, C. Kinalidis and Y. Y. Sun, Nature 345 326 (1990).

    Article  ADS  Google Scholar 

  16. S. E. Babcock, X. Y. Cai, D. L. Kaiser, and D. C. Larbalestier, Nature 347, 167 (1990).

    Article  ADS  Google Scholar 

  17. Q. Li, H. A. Hjuler and T. Freltoft, Physica C, 217 360 (1993)

    Article  ADS  Google Scholar 

  18. U. Balachandran, A. Iyer, P. Haldar, J. Hoehn, L. Motowidlo, G. Galinski, Appl. Supercon. 2 251 (1994).

    Article  Google Scholar 

  19. H. Santage, G. N. Riley Jr., and W. L. Carter, J. Metals, 43 21 (1991).

    Google Scholar 

  20. R. D. Ray II and E. E. Hellstrom, Physica C, 172 227 (1993).

    Google Scholar 

  21. K. Heine, J. Tenbrink, and M. Thoener, Appl. Phys. Lett. 55 2441 (1989).

    Article  ADS  Google Scholar 

  22. N. Shibuta, M. Ueyama, H. Muhai, and K. Sato, Jpn, J, Appl. Phys. 30 L2083 (1991).

    Article  ADS  Google Scholar 

  23. D. Shi, S. Sengupta, J. Luo, C. Varanasi, and P. J. McGinn, Physica C, 213 179 (1993).

    Article  ADS  Google Scholar 

  24. K. E. Gray, Appl. Supercon., 2 295 (1994).

    Article  Google Scholar 

  25. D. Shi, M. Blank, M. Patel, D. Hinks, K. Vandervoort, and H. Claus Physica C 156, 822 (1988)

    Article  ADS  Google Scholar 

  26. D. Shi, J. G. Chen, U. Welp, M. S. Boley, and A. Zangvil Appl. Phys. Lett. 55, 1354 (1989)

    Article  ADS  Google Scholar 

  27. D. Shi, M. S. Boley, U. Welp, and J. G. Chen, Phys. Rev. B 40, 5255 (1989)

    Article  ADS  Google Scholar 

  28. D. Shi, J. Akujieze, M. S. Boley, J. G. Chen, M. Xu, and C. U. Segre, Appl. Phys. Lett. 55, 699 (1989)

    Article  ADS  Google Scholar 

  29. D. Shi, M. Tang, M. S. Boley, M. Hash, K. Vandervoort, and H. Claus

    Google Scholar 

  30. Donglu Shi, Ming Tang, K. Vandervoort, and H. Claus, Phys. Rev. B. 39, 9091 (1989)

    Article  ADS  Google Scholar 

  31. H. Safar et el Appl. Phys. Lett. 67 130 (1995).

    Article  ADS  Google Scholar 

  32. D.H. Kim., K.E. Gray, R.T. Kampwirth, J. C. Smith, D. S. Richeson, T. J. Marks, J. H. Kang, J. Talvacchio and M. Eddy, Physica C, 177 431 (1991).

    Article  ADS  Google Scholar 

  33. P. W. Anderson, V. Ambegaokar and B. I. Halperin, Phys. Rev. Lett. 22 1364 (1969).

    Article  ADS  Google Scholar 

  34. D. Dew-Hughes, Philos. Mag. 30 293 (1974).

    Article  ADS  Google Scholar 

  35. M. Tachiki and S. Takahashi, Appl. Super. 2 305 (1994).

    Article  Google Scholar 

  36. J. R. Clem, Phys. Rev. B, 9 7837 (1991).

    Article  ADS  Google Scholar 

  37. J. W. Ekin, B. Serin, and J. R. Clem, Phys. Rev. B, 9 912 (1974).

    Article  ADS  Google Scholar 

  38. K. E. Gray, R. T. Kampwirth, J. M. Murduck and D. W. Capone II, Physica C, 152 445 (1988).

    Article  ADS  Google Scholar 

  39. S. Salem-Sugui Jr, D. Shi, and S. E. McFarland, Supercond. Sci. Technol. 5 73 (1992).

    Article  ADS  Google Scholar 

  40. W. L. Carter, Lecture on “Processing of BSCCO Compounds,” at Midwest Superconductivity Condortium Workshop, Purdue University, August 11–12, 1994

    Google Scholar 

  41. M. Murakami, Supercon. Sci. and Technol. 5 185(1992).

    Article  ADS  Google Scholar 

  42. S. Sengupta, D. Shi, Z. Wang, C. Biondo. U. Balachandran, Physica C, 199 43 (1992).

    Article  ADS  Google Scholar 

  43. C. Varanasi, S. Sengupta, P. J. McGinn, and D. Shi, Appl. Supercon. 2 117 (1994).

    Article  Google Scholar 

  44. L. N. Shehata, Phys. Stat. Sol. (b) 105, 77 (1981).

    Article  ADS  Google Scholar 

  45. R. W. Siegel et al., J. Mater. Res. 3, 1367 (1988).

    Article  ADS  Google Scholar 

  46. K. C. Goretta, B. P. Brandel, M.T. Lanagan, J. G. Hu, D. J. Miller, S. Sengupta, J. C. Parker, M. N. Ali, and Nan Chen, IEEE Transactions on Apply. Superconductivity,5, 1309 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shi, D. (1997). Can We Achieve High In-Field Jc at 77 K in Bi-Sr-Ca-Cu-O?. In: Kossowsky, R., Jelinek, M., Novak, J. (eds) Physics and Materials Science of High Temperature Superconductors, IV. NATO ASI Series, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5732-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5732-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6417-0

  • Online ISBN: 978-94-011-5732-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics