Skip to main content

Effects of solar ultraviolet-B radiation, temperature and CO2 on growth and physiology of sunflower and maize seedlings

  • Chapter
UV-B and Biosphere

Part of the book series: Advances in vegetation science ((AIVS,volume 17))

Abstract

The effects of solar UV-B radiation, in combination with elevated temperature (4 °C) and CO2 (680 μL L-1) concentration, on sunflower and maize seedlings were studied from May to August in 1991 at the research station Quinta de São Pedro in Portugal (38.7°N). The ambient solar radiation of Portugal was reduced to levels of Central European latitudes by using the ozone filter technique. This radiation served as control, while the ambient solar radiation of Portugal was to simulate intense UV-B treatment (+30%). All plants were grown up to 18 days in 4 climate controlled growth chambers simulating a daily course of temperature with T max=28 °C or 32 °C, resp., and ambient CO2 concentrations (340 μL L-1); in one chamber the CO2 concentration was twice as high (680 μL L-1). Under intense UV-B and at 28 °C (T max) all growth parameters (height, leaf area, fresh and dry weight, stem elongation rate, relative growth rate) of sunflower and maize seedlings were reduced down to 35% as compared to controls. An increase in growing temperature by 4 °C, alone or in combination with doubled CO2, compensated or even overcompensated the UV-B effect so that the treated plants were comparable to controls. Chlorophyll content, on a leaf area basis, increased under intense UV-B radiation. This increase was compensated by lower leaf areas, resulting in comparable chlorophyll contents. Similar to growth, also the net photosynthetic rates of sunflower and maize seedlings were reduced down to 29% by intense UV-B calculated on a chlorophyll basis. This reduction was compensated by an increased temperature. Doubling of CO2 concentration had effects only on sunflower seedlings in which the photosynthetic rates were higher than in the controls. Dark respiration rates of the seedlings were not influenced by any experimental condition. Transpiration and water use efficiency (wue) were not influenced by intense UV-B. Higher temperatures led to higher transpiration rates and lower water use efficiencies, resp. Doubling of CO2 reduced the transpiration rate drastically while for wue maximum values were recorded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auld B. A., Dennett, M. D. & Elston, J. 1978. The effect of temperature changes on the expansion of individual leaves of Vicia faba L., Ann. Bot. 42: 877–888.

    Google Scholar 

  • Azcón-Bieto, J., Gonzalez-Meier, M. A., Doherty, W. & Drake, D. G. 1994. Acclimation of respiratory O2 uptake in green tissue of field-grown native species after long-term exposure to elevated atmospheric CO2. Plant Physiol. 106: 1163–1168.

    PubMed  Google Scholar 

  • Barnes P. W., Jordan, P. W., Gold, W. G., Flint, S. D. & Caldwell, M. M. 1988. Competition, morphology and canopy structure in wheat (Triticum aestivum L.) and wild oat (Avena fatua L.) exposed to enhanced ultraviolet-B radiation. Funct. Ecol. 2: 319–330.

    Article  Google Scholar 

  • Bazzaz, F. A. & Fajer, E. D. 1992. Mehr Kohlendioxid — wie reagiert die Pflanzenwelt. Spektrum Wissenschaft 3: 64–71.

    Google Scholar 

  • Berry J. A., & Björkman, O. 1980. Photosynthetic response and adaptation to temperature in higher plants. Ann. Rev. Plant Physiol. 31: 491–543.

    Article  Google Scholar 

  • Beyschlag W., Barnes, P. W., Flint, S. D. & Caldwell, M. M. 1988. Enhanced UV-B irradiation has no effect on photosynthetic characteristics of wheat (Triticum aestivum L.) and wild oat (Avena fatua L.) under greenhouse and field conditions. Photosynthetica 22: 516–525.

    Google Scholar 

  • Bojkov, R. D. 1995. The changing ozone layer. A joint publication of the World Meteorological Organization and United Nations Environment Programme on tile occasion of the fiftieth anniversary of the United Nations. ISBN 92-63-10828-5.

    Google Scholar 

  • Bornman J. F., Björn, L. O. & Akerlund, H. E. 1984. Action spectrum for inhibition by ultraviolet radiation of photosystem II activity in spinach thylakoids. Photobiochem. Photobiophys. 8: 305–313.

    CAS  Google Scholar 

  • Brandie J. R., Campbell, W. F., Sisson, W. B. & Caldwell, M. M. 1977. Net photosynthesis, electron transport capacity, and ultra-structure of Pisum sativum L. exposed to ultraviolet-B radiation. Plant Physiol. 60: 165–169.

    Article  Google Scholar 

  • Eamus, D. 1991. The interaction of rising CO2 and temperature with water use efficiency. Plant, Cell Environ. 14: 843–852.

    Article  Google Scholar 

  • Harper, J. C. 1977. Population biology of plants. Academic Press. New York.

    Google Scholar 

  • Idso, S. B. 1988. Three phases of plant response to atmospheric CO2 enrichment Plant Physiol. 87: 5–7.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, I. R. & Thornley, J. H. M. 1985. Temperature dependence of plant and crop processes. Ann. Bot. 55: 1–24.

    Google Scholar 

  • Kulandaivelu, G. & Nedunchezhian, N. 1993. Synergistic effects of ultraviolet-B enhanced radiation and growth temperature on ribu-lose 1,5-bisphosphate carboxylase and 14CC2 fixation in Vigna sinensis L., Photosynthetica 29: 377–383.

    CAS  Google Scholar 

  • Laisk, A. & Sumberg, A. 1994. Partitioning of the leaf CO2 exchange into components using CO2 exchange and fluorescence measurements. Plant Physiol. 106: 689–695.

    PubMed  CAS  Google Scholar 

  • Lichtenthaler, H. K. 1987. Chlorophylls and carotenoids: Pigments ofphotosynthetic biomembranes. Meth. Enzymol. 148: 350–382.

    Article  CAS  Google Scholar 

  • Mark, U. & Tevini, M. 1996. Combination Effects of UV-B Radiation and Temperature on Sunflower (Helianthus annuus L., cv. Polstar) and Maize (Zea Mays L., cv. Zenit 2000) Seedlings. J. of Plant Physiol. 148: 49–56.

    Article  CAS  Google Scholar 

  • Mark, U., Saile-Mark, M. & Tevini, M. 1996. Effects of Solar UV-B Radiation on Growth, Flowering and Yield of Central and Southern European Maize Cultivars (Zea mays L.). Photochem. Photobiol. 64: 457–463.

    Article  CAS  Google Scholar 

  • Mirecki, R. M. & Teramura, A. H. 1984. Effects of ultraviolet-B irradiance on soybean. V. The dependence of plant sensitivity on the photosynthetic photon flux density during and after leaf expansion. Plant Physiol. 74: 475–480.

    Article  PubMed  CAS  Google Scholar 

  • Nijs, I., Impens, I. & Behaeghe, T. 1988a. Effects of elevated atmospheric dioxide on gas exchange and growth of white clover. Photosynth. Res. 15: 163–176.

    Article  CAS  Google Scholar 

  • Nijs I., Impens, I. & Behaeghe, T. 1988b. Effects of rising atmospheric carbon dioxide concentration on gas exchange and growth of perennial ryegrass. Photosynthetica 22: 44–50.

    Google Scholar 

  • Ros, J. 1990. Zur Wirkung von UV-Strahlung auf das Streckungswachstum von Sonnenblumenkeimlingen (Helianthus annuus L.). In: M. Tevini (ed.) Karlsruher Beitr. Entwicklungs-und Ökophysiol. 8: 1–157.

    Google Scholar 

  • Ros, J. & Tevini, M. 1995. UV-radiation and Indole-3-acetic-acid: Interactions during growth of seedlings and hypocotyl segments of sunflower. J. Plant Phys. 146: 295–305.

    Article  CAS  Google Scholar 

  • Rozema, J., Lenssen, G. M., Arp, W. J. & van de Staaij, J. W. M. 1991. Global change, the impact of the greenhouse effect (atmospheric CO2 enrichment) and the increased UV-B radiation on terrestrial plants. pp. 220–231. In: Ecological Responses to Environmental Stresses. Rozema J. & Verkleij J. A. C. (eds) Kluwer Academic Publishers, Dordrecht, Holland.

    Chapter  Google Scholar 

  • Schneider, S. H. 1989. The greenhouse effect: science and policy. Science 243: 771–781.

    Article  PubMed  CAS  Google Scholar 

  • Sionit, H., Hellmers, H. & Strain, B. R. 1980. Growth and yield of wheat under CO2 enrichment and water stress. Crop Sci. 20: 687–690.

    Article  Google Scholar 

  • Sisson, W. B. & Caldwell, M. M. 1976. Photosynthesis, dark respiration and growth of Rumex patientia L. exposed to ultraviolet irradiance (280 to 315 nm) simulating a reduced atmospheric ozone column. Plant Physiol. 58: 563–568.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R. C., Prézelin, B. B., Baker, K. S., Bidigare, R. R., Boucher, N. P., Coley, T., Karentz, D., MacIntyre, S., Matlick, H. A., Menzies, D., Ondrusek, M., Wan, Z. & Waters, K. J. 1992. Ozone depletion: Ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255: 952–959.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan, J. H. & Teramura, A. H. 1988. Effects of ultraviolet-B irradiation on seedling growth in the Pinaceae. Am. J. Bot. 72: 225–230.

    Article  Google Scholar 

  • Sullivan, J. H. & Teramura, A. H. 1990. Field study of the interaction between solar ultraviolet-B radiation and drought on photosynthesis and growth in soybean. Plant Physiol. 92: 141–146.

    Article  PubMed  CAS  Google Scholar 

  • Teramura, A. H. 1980. Effects of ultraviolet-B irradiance on soybean. I. Importance of photosynthetically active radiation in evaluating ultraviolet-B irradiance effects on soybean and wheat growth. Physiol. Plant. 48: 333–339.

    Article  Google Scholar 

  • Teramura, A. H., Biggs, R. H. & Kossuth, S. 1980. Effects of ultraviolet-B irradiances on soybean. II. Interaction between ultraviolet-B and photosynthetically active radiation on net photosynthesis, dark respiration and transpiration. Plant Physiol. 65: 483–488.

    Article  PubMed  CAS  Google Scholar 

  • Teramura, A. H., Sullivan, J. H. & Lydon, L. 1990a. Effects of UV-B radiation on soybean yield and seed quality: a 6-year field study. Physiol. Plant. 80: 5–11.

    Article  Google Scholar 

  • Teramura, A. H., Sullivan, J. H. & Ziska, L. H. 1990b. Interaction of elevated CO2 on productivity and photosynthetic characteristics in wheat, rice and soybean. Plant Physiol. 94: 470–475.

    Article  PubMed  CAS  Google Scholar 

  • Tevini, M. & Pfister, K. 1985Inhibition of photosystem II by UV-B radiation. Z. Naturforsch. 40: 129–133.

    Google Scholar 

  • Tevini, M. & Teramura, A. H. 1989. UV-B effects on terrestrial plante. Photochem. Photobiol. 50: 479–487.

    Article  CAS  Google Scholar 

  • Tevini, M., Thoma, U. & Iwanzik, W. 1983. Effects of enhanced UV-B radiation on germination, seedling growth, leaf anatomy and pigments of some crop plants. Z. Pflanzenphysiol. 109: 435–448.

    CAS  Google Scholar 

  • Tevini, M., Mark, U. & Saile, M. 1990. Plant experiments in growth chambers illuminated with natural sunlight pp. 240–251. In: Payer, H. D. Pfirrmann, T. & Mathy P. (eds.) Environmental Research with Plants in Closed Chambers. Air pollution Res. Rep. 26, Commission of the European Communities, Brussels, Belgium.

    Google Scholar 

  • Tevini, M., Braun, J. & Fieser, G. 1991. The protective function of the epidermal layer of rye seedlings against ultraviolet-B radiation. Photochem. Photobiol. 53: 329–333.

    Article  CAS  Google Scholar 

  • Von Caemmerer, S. & Farquhar, G. D. 1981. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153: 376–387.

    Article  Google Scholar 

  • Vu, C. V., Allen, L. H. & Garrard, L. A. 1982. Effects of supplemental UV-B radiation on primary photosynthetic carboxylating enzymes and soluble proteins in leaves of C3 and C4 crop plants. Physiol. Plant. 55: 11–16.

    Article  CAS  Google Scholar 

  • Warren-Wilson, J. 1966. Effect oftemperature on the net assimilation rate. Ann. Bot. 30: 753–761.

    Google Scholar 

  • Wolf, U. 1988. Morphologische Untersuchungen zur Wirkung von UV-Strahlung auf das Streckungswachstum von Sonnenblumenkeimlingen. Staatsexamensarbeit. Universität Karlsruhe.

    Google Scholar 

  • Wooledge, J. & Parsons, A. J. 1986. The effect oftemperature on the photosynthesis of the ryegrass canopies. Ann. Bot. 57: 487–497.

    Google Scholar 

  • Wullschleger, S. D., Ziska, L. H. & Bunce, J. A. 1994. Respiratory responses of higher plants to atmospheric CO2 enrichment Physiol. Plant. 90: 221–229.

    Article  CAS  Google Scholar 

  • Ziska, L. H. & Bunce, J. A. 1994. Increasing growth temperature reduces the stimulatory effect of elevated CO2 on photosynthesis or biomass in two perennial species. Physiol. Plant. 91: 183–190.

    Article  CAS  Google Scholar 

  • Ziska, L. H. & Teramura, A. H. 1992. CO2 enhancement of growth and photosynthesis in rice (Oryza sativa). Plant Physiol. 99: 473–481.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mark, U., Tevini, M. (1997). Effects of solar ultraviolet-B radiation, temperature and CO2 on growth and physiology of sunflower and maize seedlings. In: Rozema, J., Gieskes, W.W.C., Van De Geijn, S.C., Nolan, C., De Boois, H. (eds) UV-B and Biosphere. Advances in vegetation science, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5718-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5718-6_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6411-8

  • Online ISBN: 978-94-011-5718-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics