Skip to main content

Measuring spontaneous deleterious mutation process

  • Chapter
Mutation and Evolution

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 7))

  • 629 Accesses

Abstract

Parameters of the deleterious mutation process can be estimated using the data on genotypes, phenotypes, or fitnesses. These data can be on long-term evolution, on short-term changes, or on the properties of equilibrium populations. The two most important parameters at the genomic level, the total deleterious mutation rate U and the mutational pressure on fitness P, remain poorly known. Reliable data on the rates of presumably neutral evolution, together with less certain estimates of the functionally important fraction of the genome, suggest that in mammals U > 1. The magnitudes of inbreeding depression in populations of selfers imply U ∼ 1 in flowering plants. The straightforward way to estimate P is to assay the decline of fitness in populations with relaxed selection. The relevant data are contradictory, possibly because the results of the measurement of fitness depend strongly on the environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agren, J. & D. Schemske, 1993. Outcrossing rate and inbreeding depression in two annual monoecious herbs, Begonia hirsuta and B. semiovata. Evolution 47: 125–135.

    Article  Google Scholar 

  • Andersson, D.I. & D. Hughes, 1996. Muller’s ratchet decreases fitness of a DNA-based microbe. Proc. Natl. Acad. Sci. USA 93: 906–907.

    Article  PubMed  CAS  Google Scholar 

  • Andreassen, R., T. Egeland & B. Olaisen, 1996. Mutation rate in the hypervariable VNTR g3 (D7S22) is affected by allele length and flanking DNA sequence polymorphism near the repeat array. Amer. J. Hum. Genet. 59: 360–367.

    PubMed  CAS  Google Scholar 

  • Andrew, S.E., S. Pownall, J. Fox, L. Hsiao, J. Hambleton, J.E. Penney, S.W. Kohler & E.R. Jirik, 1996. A novel lacI transgenic mutation-detection system and its application to establish baseline mutation frequencies in the scid mouse. Mut. Res. 357: 57–66.

    Article  Google Scholar 

  • Arnason, U., X. Xu & A. Gullberg, 1996. Comparison between the complete mitochondrial DNA sequences of Homo and the common chimpanzee based on nonchimeric sequences. J. Mol. Evol. 42: 145–152.

    Article  PubMed  CAS  Google Scholar 

  • Bachl, J. & M. Wabl, 1996. Enhancers of hypermutation. Immuno-genetics 45: 59–64.

    CAS  Google Scholar 

  • Barrett, S.C.H. & D. Charlesworth, 1991. Effects of a change in the level of inbreeding on the genetic load. Nature 352: 522–524.

    Article  PubMed  CAS  Google Scholar 

  • Bellus, G.A., T.W. Hefferon, R.I.O. De-Luna, J.T. Hecht, W.A. Horton, M. Machado, I. Kaitila, I. Mclntosh & C.A. Francomano, 1995. Achondroplasia is defined by recurrent G380R mutations of FGFR3. Amer. J. Hum. Gen. 56: 368–373.

    CAS  Google Scholar 

  • Bernardi, G., 1993. The isochore organization of the human genome and its evolutionary history: A review. Gene 135: 57–66.

    Article  PubMed  CAS  Google Scholar 

  • Bottema, C.D.K., R.P. Ketterling, S. Li, H.-S. Yoon, J.A. Phillips III & S.S. Sommer, 1991. Missence mutations and evolutionary conservation of amino acids: evidence that many of the amino acids in factor IX function as’ spacer’ elements. Am. J. Hum. Genet. 49: 820–828.

    PubMed  CAS  Google Scholar 

  • Bittles, A.H. & J.V. Neel, 1994. The costs of human inbreeding and their implications for variations at the DNA level. Nature Genetics 8: 117–121.

    Article  PubMed  CAS  Google Scholar 

  • Britten, R.J., 1986. Rates of DNA sequence evolution differ between taxonomic groups. Science 231: 1393–1398.

    Article  PubMed  CAS  Google Scholar 

  • Britten, R.J., 1996. DNA sequence insertion and evolutionary varia tion in gene regulation. Proc. Natl. Acad. of Sci. USA 93: 9374–9377.

    Article  CAS  Google Scholar 

  • Cabrallero, A., P.D. Keightley & W.G. Hill, 1995. Accumulation of mutations affecting body weight in inbred mouse lines. Genet. Res. 65: 145–149.

    Article  Google Scholar 

  • Caccone, A., G.D. Amato & J.R. Powell, 1988. Rates and Pat terns of scnDNA and mtDNA divergence within the Drosophila melanogaster subgroup. Genetics 118: 671–683.

    PubMed  CAS  Google Scholar 

  • Caccone, A., R. Desalle & J.R. Powell, 1988. Calibration of the change in thermal stability of DNA duplexes and degree of base pair mismatch. J. Mol. Evol. 27: 212–216.

    Article  PubMed  CAS  Google Scholar 

  • Caccone, A. & J.R. Powell, 1989. DNA divergence among hominoids. Evolution 43: 925–942.

    Article  Google Scholar 

  • Charlesworth, B., 1996. Background selection and patterns of genet ic diversity in Drosophila melanogaster. Genet. Res. 68: 131–149.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B., D. Charlesworth & M.T. Morgan, 1990. Genet ic loads and estimates of mutation rates in highly inbred plant populations. Nature 347: 380–382.

    Article  Google Scholar 

  • Charlesworth, B. & N.H. Barton, 1996. Recombination load asso ciated with selection for increased recombination. Genetical Research 67: 27–41.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B. & K.A. Hughes, 1997. The quantitative genetics of life history traits.

    Google Scholar 

  • Charlesworth, D., M.T. Morgan & B. Charlesworth, 1990. Inbreed ing depression genetic load and the evolution of outcrossing rates in a multilocus system with no linkage. Evolution 44: 1469–1489.

    Article  Google Scholar 

  • Charlesworth, D., E.E. Lyons & L.B. Litchfield, 1994. Inbreeding depression in two highly inbreeding populations of Leavenworthia. Proc. Roy. Soc. Lond. B 258: 209–214.

    Article  Google Scholar 

  • Clark, A.G., L. Wang & T. Hulleberg, 1995. Spontaneous mutation rate of modifiers of metabolism in Drosophila. Genetics 139: 767–779.

    PubMed  CAS  Google Scholar 

  • Cohn, V.H. & G.P. Moore, 1988. Organization and evolution of the alcohol dehydrogenase gene in Drosophila. Mol. Biol. Evol. 5: 154–166.

    PubMed  CAS  Google Scholar 

  • Cole, J. & T.R. Skopek, 1994. Somatic mutation frequency, mutation rates and mutational spectra in the human population in vivo. Mut. Res. 304: 33–105.

    Article  CAS  Google Scholar 

  • Crow, J.F., 1970. Genetic loads and the cost of natural selection, pp. 128–177 in: Mathematical Topics in Population Genetics edited by K. Kojima, Springer, Heidelberg.

    Chapter  Google Scholar 

  • Crow, J.F., 1979. Minor viability mutants in Drosophila. Genetics 92 (Suppl.): 165–172.

    Google Scholar 

  • Crow, J.F., 1993. How much do we know about spontaneous human mutation rates?. Env. Mol. Mutagen. 21: 122–129.

    Article  CAS  Google Scholar 

  • Crow, J.F., 1997. The high spontaneous mutation rate: Is it a health risk?. Proc. Natl. Sci. USA 94: 8380–8386.

    Article  CAS  Google Scholar 

  • Crow, J. F. & M. Kimura, 1979. Efficiency of truncation selection. Proc. Natl. Acad. Sci. USA 76: 396–399.

    Article  PubMed  CAS  Google Scholar 

  • Crow, J. F. & M. J. Simmons, 1983. The mutation load in Drosophila, pp. 1–35 in The genetics and biology of Drosophila, Vol 3C edited by M. Ashburner, H.L. Carson, & J.N. Thompson, Jr. Academic Press, New York.

    Google Scholar 

  • Crow, J.F. & C. Denniston, 1985. Mutation in human populations. Adv. Hum. Genet. 14: 59–123.

    PubMed  CAS  Google Scholar 

  • Curry, J., G. Bebb, J. Moffat, D. Young, M. Khaidakov, A. Mortimer & B.W. Glickman, 1997. Similar mutant frequencies observed between pairs of monozygotic twins. Human Mutation 9: 445–451.

    Article  PubMed  CAS  Google Scholar 

  • Darwin, C., 1859. The Origin of Species. Murray, London.

    Google Scholar 

  • Datta, A. & S. Jinks-Robertson, 1995. Association of increased spontaneous mutation rates with high levels of transcription in yeast. Science 268: 1616–1619.

    Article  PubMed  CAS  Google Scholar 

  • Deng, H.W. & M. Lynch, 1996. Estimation of deleterious-mutation parameters in natural populations. Genetics 144: 349–360.

    PubMed  CAS  Google Scholar 

  • Deng, H.W. & Y.X. Fu, 1996. The effects of variable mutation rates across sites on the phylogenetic estimation of effective population size of mutation rate of DNA sequences. Genetics 144: 1271–1281.

    PubMed  CAS  Google Scholar 

  • Douzery, E., J.D. Lebreton & F.M. Catzeflis, 1995. Testing the gen eration time hypothesis using DNA-DNA hybridization between artiodactyls. J. Evol. Biol. 8: 511–529.

    Article  CAS  Google Scholar 

  • Drake, J.W., 1991. A constant rate of spontaneous mutation in DNA-based microbes. Proc. Natl. Acad. Sci. USA 88: 7160–7164.

    Article  PubMed  CAS  Google Scholar 

  • Drake, J.W., 1993a. Rates of spontaneous mutation among RNA viruses. Proc. Natl. Acad. Sci. USA 90: 4171–4175.

    Article  PubMed  CAS  Google Scholar 

  • Drake, J.W., 1993b. General antimutators are improbable. J. Mol. Biol. 229: 8–13.

    Article  PubMed  CAS  Google Scholar 

  • Drost, J.B. & W.R. Lee, 1995. Biological basis of germline muta tion: Comparisons of spontaneous germline mutation rates among drosophila, mouse, and human. Env. Mol. Mutagen. 25(SUPPL. 26): 48–64.

    Article  CAS  Google Scholar 

  • Dutton, C.M., C.D.K. Bottema & S.S. Sommer, 1993. Alu repeats in the human factor IX gene: The rate of polymorphism is not substantially elevated. Human Mutation 2: 468–472.

    Article  PubMed  CAS  Google Scholar 

  • Easteal, S. & C. Collet, 1994. Consistent variation in amino-acid substitution rate, despite uniformity of mutation rate: Protein evolution in mammals is not neutral. Mol. Biol. Evol. 11: 643–647.

    PubMed  CAS  Google Scholar 

  • Eeken, J.C.J., A.W.M. De Jong & M.M. Green, 1987. The spon taneous mutation rate in Drosophila simulons. Mut. Res. 192: 259–262.

    Article  CAS  Google Scholar 

  • Evtushenko, V.I., K.P. Hanson, O.V Barabitskaya, A.V. Emelyanov, V.L. Reshetnikov & A.P. Kozlov, 1989. An attempt to deter mine the maximal expression of the rat genome. Molekulyarnaya Biologiya 23: 663–675 (Russian).

    CAS  Google Scholar 

  • Favor, J., 1994. Spontaneous mutations in germ line cells of the mouse: estimates of mutation frequencies and a molecular char acterization of mutagenic events. Mut. Res. 304: 107–118.

    Article  CAS  Google Scholar 

  • Fernandez, J. & C. Lopez-Fanjul, 1996. Spontaneous mutational variances and covariances for fitness-related traits in Drosophila melanogaster. Genetics 143: 829–837.

    PubMed  CAS  Google Scholar 

  • Fu, Y.X., 1996. New statistical tests of neutrality for DNA samples from a population. Genetics 143: 557–570.

    PubMed  CAS  Google Scholar 

  • Goodwin, R.L., H. Baumann & F.G. Berger, 1996. Patterns of diver gence during evolution of alpha-1-proteinase inhibitors in mam mals. Mol. Biol. Evol. 13: 346–358.

    Article  PubMed  CAS  Google Scholar 

  • Hammer, M.F., 1995. A recent common ancestry for human Y Chromosomes. Nature 378: 376–378.

    Article  PubMed  CAS  Google Scholar 

  • Harada, K., 1995. A quantitative analysis of modifier mutations which occur in mutation accumulation lines in Drosophila melanogaster. Heredity 75: 589–598.

    Article  PubMed  CAS  Google Scholar 

  • Harada, K., S.I. Kusakabe, T. Yamazaki & T. Mukai, 1993. Sponta neous mutation rates in null and band-morph mutations of enzyme loci in Drosophila melanogaster. Japan. J. Genet. 68: 605–616.

    Article  CAS  Google Scholar 

  • Horai, S. & K. Hayasaka, R. Kondo, K. Tsugane & N. Takahata, 1995. Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proc. Natl. Acad. Sci. USA 92: 532–536.

    Article  PubMed  CAS  Google Scholar 

  • Houle, D., 1989. The maintenance of polygenic variation in finite populations. Evolution 43: 1767–1780.

    Article  Google Scholar 

  • Houle, D., D.K. Hoffmaster, S. Assimacopoulos & B. Charlesworth, 1992. The genomic mutation rate for fitness in Drosophila. Nature 359: 58–60.

    Article  PubMed  CAS  Google Scholar 

  • Houle, D., B. Morikawa & M. Lynch, 1996. Comparing mutational variabilities. Genetics 143: 1467–1483.

    PubMed  CAS  Google Scholar 

  • Houle, D., A.S. Kondrashov, L. Yu. Yampolsky, S. Caldwell & P.L. Steponkus, 1997. The effect of cryopreservation on the lethal mutation rate in Drosophila melanogaster. Genet. Res.

    Google Scholar 

  • Howell, N., 1996. Mutational analysis of the human mitochondrial genome branches into the realm of bacterial genetics. Amer. J. Hum. Genet. 59: 749–755.

    PubMed  CAS  Google Scholar 

  • Howell, N., I. Kubacka & D.A. Mackey, 1996. How rapidly does the human mitochondrial genome evolve?. Amer. J. Hum. Genet. 59: 501–509.

    PubMed  CAS  Google Scholar 

  • Husband, B.C. & D.W. Schemske, 1996. Evolution of the magnitude and timing of inbreeding depression in plants. Evolution 50: 54–70.

    Article  Google Scholar 

  • Jacobs, K.L. & D.W. Grogan, 1997. Rates of spontaneous mutation in a archaeon from geothermal environments. J. Bact. 179: 3298–3303.

    PubMed  CAS  Google Scholar 

  • Jimenez, J.A., K.A. Hughes, G. Alaks, L. Graham, & R.C. Lacy, 1994. An experimental study of inbreeding depression in a natural habitat. Science 266: 271–273.

    Article  PubMed  CAS  Google Scholar 

  • Jin, L., C. Macaubas, J. Hallmayer, A. Kimura & E. Mignot, 1996. Mutation rate varies among alleles at a microsatellite locus: Phy logenetic evidence. Proc. Natl. Acad. Sci. USA 93: 15285–15288.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, M.O. & D.J. Schoen, 1995. Mutation rates and dominance levels of genes affecting total fitness in two angiosperm species. Science 267: 226–229.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, M.O. & D.J. Schoen, 1996. Correlated evolution of selffertilization and inbreeding depression: An experimental study of nine populations of Amsinckia (Boraginaceae). Evolution 50: 1478–1491.

    Article  Google Scholar 

  • Karkkainen, K., V. Koski & O. Savolainen, 1996. Geographical variation in the inbreeding depression of Scots pine. Evolution 50: 111–119.

    Article  Google Scholar 

  • Karotam, J., T.M. Boyce & J.G. Oakeshott, 1995. Nucleotide varia tion at the hypervariable esterase 6 isozyme locus of Drosophila simulons. Mol. Biol. Evol. 12: 113–122.

    Article  PubMed  CAS  Google Scholar 

  • Kawecki, T.J., 1997. Sympatric speciation via habitat specialization driven by deleterious mutations. Evolution. 51: 1751–1763.

    Article  Google Scholar 

  • Keightley, P.D., 1994. The distribution of mutation effects on viability in Drosophila melanogaster. Genetics 138: 1315–1322.

    PubMed  CAS  Google Scholar 

  • Keightley, P.D., 1996. Nature of deleterious mutation load in Drosophila. Genetics 144: 1993–1999.

    PubMed  CAS  Google Scholar 

  • Keightley, P.D. & A. Caballero, 1997. Genomic mutation rates fro lifetime reproductive output and life span in Caenorhadbitis elegans. Proc. Natl. Acad. Sci. USA 94: 3823–3827.

    Article  PubMed  CAS  Google Scholar 

  • Kibota, T.T. & M. Lynch, 1996. Estimate of the genomic mutation rate deleterious to overall fitness in E. coli. Nature 381: 694–696.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M., 1983. The Neutral Theory of Molecular Evolution. Cambridge Univ. Press.

    Google Scholar 

  • Kimura, M. & T. Ohta, 1969. The average number of generations until extinction of an individual mutant gene in a finite population. Genetics 63: 701–709.

    PubMed  CAS  Google Scholar 

  • Kisakibaru, Y. & H. Matsuda, 1995. Nucleotide substitution type dependence of generation time effect of molecular evolution. Japan. J. Genet. 70: 373–386.

    Article  CAS  Google Scholar 

  • Klekowski, E.J. Jr., 1992. Mutation rates in diploid annuals-are they immutable?. Int. J. Plant. Sci. 153: 462–465.

    Article  Google Scholar 

  • Knight, A., M.A. Batzer, M. Stoneking, H.K. Tiwari, W.D. Scheer, R J. Herrera & P.L. Deininger, 1996. DNA sequences of Alu elements indicate a recent replacement of the human autosomal genetic complement. Proc. Natl. Acad. Sci. USA 93: 4360–4364.

    Article  PubMed  CAS  Google Scholar 

  • Koeberl, D.D., C.D.K. Bottema, R.P. Ketterling, P.J. Bridge, D.P. Lillicrap & S.S. Sommer, 1990. Mutations causing hemophilia B: direct estimate of the underlying rates of spontaneous germ-line transitions, transversions, and deletions in a human gene. Am. J. Hum. Genet. 47: 202–217.

    PubMed  CAS  Google Scholar 

  • Koga, A., K. Harada, S. Kusakabe & T. Mukai, 1992. Spontaneous mutations affecting glycerol-3-phosphate dehydrogenase enzyme activity in Drosophila melanogaster. Japan. J. Genet. 67: 125–132.

    Article  CAS  Google Scholar 

  • Kondrashov, A.S., 1988. Deleterious mutations and the evolution of sexual reproduction. Nature 336: 435–440.

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov, A.S., 1995a. Contamination of the genome by very slightly deleterious mutations: why have we not died 100 times over?. J. Theor. Biol. 175: 583–594.

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov, A.S., 1995b. Modifiers of reproduction under the mutation-selection balance: general approach and the evolution of mutability. Genet. Res. 66: 53–69.

    Article  Google Scholar 

  • Kondrashov, A.S., 1997. Evolutionary genetics of life cycles. Ann. Rev. Ecol. Syst. 28: 391–435.

    Article  Google Scholar 

  • Kondrashov, A.S. & M. Turelli, 1992. Deleterious mutations, quanti tative variation, and apparent stabilizing selection. Genetics 132: 603–618.

    PubMed  CAS  Google Scholar 

  • Kondrashov, A.S. & J.F. Crow, 1993. A molecular approach to esti mating the human deleterious mutation rate. Human Mutation 2: 229–234.

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov, A.S. & D. Houle, 1994. Genotype-environment interac tions and the estimation of the genomic mutation rate in Drosophila melanogaster. Proc. Roy. Soc. Lond. B 258: 221–227.

    Article  CAS  Google Scholar 

  • Kuhner, M.K., J. Yamato & J. Felsenstein, 1995. Estimating effec tive population size and mutation rate from sequence data using Metropolis-Hastings sampling. Genetics 140: 1421–1430.

    PubMed  CAS  Google Scholar 

  • Kuick, R.D., J.V. Neel, J.R. Strahler, E.H.Y. Chu, R. Bargal, D.A. Fox & S.M. Hanash, 1992. Similarity of spontaneous germinal and in-vitro somatic cell mutation rates in humans implications for carcinogenesis and for the role of exogenous factors in spon taneous germinal mutagenesis. Proc. Natl. Acad. Sci. USA 89: 7036–7040.

    Article  PubMed  CAS  Google Scholar 

  • Lande, R., 1995. Mutation and conservation. Conserv. Biol. 9: 782–791.

    Article  Google Scholar 

  • Lee, Y.-H., T. Ota & V.D. Vacquier, 1995. Positive selection is a general phenomenon in the evolution of abalone sperm lysin. Mol. Biol. Evol. 12: 231–238.

    PubMed  CAS  Google Scholar 

  • Li, W.-H., T. Gojobori & M. Nei, 1980. Pseudogenes as a paradigm of neutral evolution. Nature 292: 237–239.

    Article  Google Scholar 

  • Li, W.-H. & L.A. Sadler, 1991. Low nucleotide diversity in man. Genetics 129: 513–523.

    PubMed  CAS  Google Scholar 

  • Li, W.-H., D.L. Ellsworth, J. Krushkal, B.H.J. Chang & D. Hewett-Emmett, 1996. Rates of nucleotide substitution in primates and rodents and the generation-time effect hypothesis. Mol. Phyl. Evol. 5: 182–187.

    Article  CAS  Google Scholar 

  • Lopez, J.V., M. Culver, J.C. Stephens, W.E. Johnson & S.J. O’Brien, 1997. Rates of nuclear and cytoplasmic mitochondrial DNA sequence divergence in mammals. Mol. Biol. Evol. 14: 277–286.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, M., 1985. Spontaneous mutations for life-history characters in an obligate parthenogen. Evolution 34: 804–818.

    Article  Google Scholar 

  • Lynch, M., 1988. The rate of polygenic mutation. Genet. Res. 51: 137–148.

    Article  PubMed  CAS  Google Scholar 

  • Mackay, T.F.C. & J.D. Fry, 1996. Polygenic mutation in Drosophila melanogaster. Genetic interactions between selection lines and candidate quantitative trait loci. Genetics 144: 671–688.

    CAS  Google Scholar 

  • Malmgren, H., J. Gustavsson, T. Tuvemo & N. Dahl, 1996. Rapid detection of a mutation hot-spot in the human androgen receptor. Clinical Genetics 50: 202–205.

    Article  PubMed  CAS  Google Scholar 

  • Martins, E.P., 1994. Estimating the rate of phenotypic evolution from comparative data. Amer. Nat. 144: 193–209.

    Article  Google Scholar 

  • May, C.A., A.J. Jeffreys & J.A.L. Armour, 1996. Mutation rate heterogeneity and the generation of allele diversity at the human minisatellite MS205 (D16S309). Hum. Mol. Genet. 5: 1823–1833.

    Article  PubMed  CAS  Google Scholar 

  • McVean, G.T. & L.D. Hurst, 1997. Evidence for a selectively favourable reduction in the mutation rate of the X chromosome. Nature 386: 388–392.

    Article  PubMed  CAS  Google Scholar 

  • Messier, W. & C.B. Stewart, 1997. Episodic adaptive evolution of primate lysozymes. Nature 385: 151–154.

    Article  PubMed  CAS  Google Scholar 

  • Mitra, R., B.M. Pettitt & R.D. Blake, 1995. Conformational states governing the rates of spontaneous transition mutations. Biopolymers 36: 169–179.

    Article  PubMed  CAS  Google Scholar 

  • Mohrenweiser, H., 1994. Impact of the molecular spectrum of mutational lesions on estimates of germinal gene-mutation rates. Mut. Res. 304: 119–137.

    Article  CAS  Google Scholar 

  • Monckton, D.G., R. Neumann, T. Guram, N. Fretwell, K. Tamaki, A. MacLeod & A.J. Jeffreys, 1994. Minisatellite mutation rate vari ation associated with a flanking DNA sequence polymorphism. Nature Genetics 8: 162–170.

    Article  PubMed  CAS  Google Scholar 

  • Moriyama, E.N. & D.L. Hartl, 1993. Codon usage bias and base composition of nuclear genes in Drosophila. Genetics 134: 847–858.

    PubMed  CAS  Google Scholar 

  • Morton, N.E., J.F. Crow & H.J. Muller, 1956. An estimate of the mutational damage in man from data on consanguineous mar riages. Proc. Natl. Acad. Sci. USA 42: 855–863.

    Article  PubMed  CAS  Google Scholar 

  • Mukai, T., 1964. The genetic structure of natural populations of Drosophila melanogaster. iI. Spontaneous mutation rate of polygenes controlling viability. Genetics 50: 1–19.

    PubMed  CAS  Google Scholar 

  • Mukai, T., S.T. Chigusa, L.E. Mettler & J.F. Crow, 1972. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics 72: 335–355.

    PubMed  CAS  Google Scholar 

  • Mukai, T. & C. C. Cockerham, 1977. Spontaneous mutation rates of enzyme loci in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 74: 2514–2517.

    Article  PubMed  CAS  Google Scholar 

  • Muller, H.J., 1950. Our load of mutations. Amer. J. Hum. Genet. 2: 111–176.

    PubMed  CAS  Google Scholar 

  • Neel, J.V., 1983. Frequency of spontaneous and induced ‘point’ mutation in higher eukaryotes. J. of Heredity 74: 2–15.

    CAS  Google Scholar 

  • Neel, J.V., C. Satoh, K. Goriki, M. Fujita, N. Takahashi, J. Asakawa & R. Hazama, 1986a. The rate with which spontaneous mutation alters the electrophoretic mobility of polypeptides. Proc. Natl. Acad. Sci. USA 83: 389–393.

    Article  PubMed  CAS  Google Scholar 

  • Neel, J.V., H.W. Mohrenweiser, E.D. Rothman & J. M. Naidu, 1986b. A revised indirect estimate of mutation rates in Amerindi ans. Am. J. Hum. Genet. 38: 649–666.

    PubMed  CAS  Google Scholar 

  • Nei, M., 1977. Estimation of mutation rates from rare protein vari ants. Am. J. Hum. Genet. 29: 225–232.

    PubMed  CAS  Google Scholar 

  • Nelson, K. & L.B. Holmes, 1989. Malformations due to presumed spontaneous mutations in newborn infants. New Eng. J. Med. 320: 19–23.

    Article  PubMed  CAS  Google Scholar 

  • Nuzhdin, S.V. & T.F.C. Mackay, 1994. Direct determination of retro transposition rates in Drosophila melanogaster. Genet. Res. 63: 139–144.

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi, O., 1977. Spontaneous and ethyl methanesulfonate-induced mutations controlling viability in Drosophila melanogaster. II Homozygous effects of polygenic mutations. Genetics 87: 529–545.

    CAS  Google Scholar 

  • Ohta, T., 1993a. Amino acid substitution at the Adh locus of Drosophila is facilitated by small population size. Proc. Natl. Acad. Sci. USA 90: 4548–4551.

    Article  PubMed  CAS  Google Scholar 

  • Ohta, T., 1993b. An examination of the generation-time effect on molecular evolution. Proc. Natl. Acad. Sci. USA 90: 10676–10680.

    Article  PubMed  CAS  Google Scholar 

  • Ohta, T. & C.C. Cockerham, 1974. Detrimental genes with partial selfing and effects on a neutral locus. Genet. Res. 23: 191–200.

    Article  Google Scholar 

  • Partridge, L. & N.H. Barton, 1993. Optimality, mutation and the evolution of ageing. Nature 362: 305–311.

    Article  PubMed  CAS  Google Scholar 

  • Paunio, T., Y. Sunada, S. Kiuru, H. Makishita, S.I. Ikeda, J. Weissenbach, J. Palo & L. Peltonen, 1995. Haplotype analysis in gelsolin-related amyloidosis reveals independent origin of iden tical mutation (G654A) of gelsolin in Finland and Japan. Hum. Mut. 6: 60–65.

    Article  PubMed  CAS  Google Scholar 

  • Petrov, D.A., E.R. Lozovskaya & D.L. Hartl, 1996. High intrinsic rate of DNA loss in Drosophila. Nature 384: 346–349.

    Article  PubMed  CAS  Google Scholar 

  • Prior, T.W., C. Bartolo, D.K. Pearl, A.C. Papp, P. J. Snyder, M.S. Sedra, A.H.M. Burghes & J.R. Mendell, 1995. Spectrum, of small mutations in the dystrophin coding region. Am. J. Hum. Genet. 57: 22–33.

    PubMed  CAS  Google Scholar 

  • Ritland, K., 1996. Inferring the genetic basis of inbreeding depres sion in plants. Genome 39: 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, J.D. & T.A. Kunkel, 1996. Fidelity of DNA replication pp.217-247 in Cold Spring Harbour Monograph Series, 31 DNA replication in eukaryotic cells edited by M.L. DePamphilis.

    Google Scholar 

  • Roest, P.A.M., M. Bout, A.C. Van Der Tuijn, I.B. Ginjaar, E. Bakker, F.B.L. Hogervorst, G.J.B. Van Ommen & J.T. Den Dunnen, 1996. Splicing mutations in DMD-BMD detected by RT-PCR-PTT: Detection of a 19AA insertion in the cysteine rich domain of dystrophin compatible with BMD. J. Med. Genet. 33: 935–939.

    Article  PubMed  CAS  Google Scholar 

  • Rothman, E.D. & J. Adams, 1978. Estimation of expected number of rare alleles of a locus and calculation of mutation rate. Proc. Natl. Acad. Sci. USA 75: 5094–5098.

    Article  PubMed  CAS  Google Scholar 

  • Rowe, L. & D. Houle, 1996. The lek paradox and the capture of genetic variance by condition dependent traits. Proc. Roy. Soc. Lond. B 263: 1415–1421.

    Article  Google Scholar 

  • Russell, L.B. & W.L. Russell, 1996. Spontaneous mutations recov ered as mosaics in the mouse specific-locus test. Proc. Natl. Acad. Sci. USA 93: 13072–13077.

    Article  PubMed  CAS  Google Scholar 

  • Saito, Y., 1994. Is sterility by deleterious recessives an origin of inequalities in the evolution of eusociality?. J. Theor. Biol. 166: 113–115.

    Article  PubMed  CAS  Google Scholar 

  • Schneppenheim, R., S. Krey, F. Bergmann, D. Bock, U. Budde, M. Lange, R. Linde, U. Mittler, E. Meili, G. Mertes, K. Olek, H. Plendl & E. Simeoni, 1994. Genetic heterogeneity of severe von Willebrand disease type III in the German population. Hum. Genet: 94: 640–652.

    Article  PubMed  CAS  Google Scholar 

  • Schug, M.D., T.F.C. Mackay & C.F. Aquadro, 1997. Low mutation rates of microsatellite loci in Drosophila melanogaster. Nature Genetics 15: 99–102.

    Article  PubMed  CAS  Google Scholar 

  • Scott, T.M. & R.K. Koehn, 1990. The effect of environmental stress on the relationship of heterozygosity to growth rate in the coot clam Mulinia lateralis Say. J. Exp. Mar. Biol. Ecol. 135: 109–116.

    Article  Google Scholar 

  • Shabalina S.A., L. Yu. Yampolsky & A.S. Kondrashov, 1997. Rapid decline of fitness in panmictic populations of Drosophila under relaxed selection. Proc. Natl. Acad. Sci. USA 94: 13034–13039.

    Article  PubMed  CAS  Google Scholar 

  • Shimmin, L.C., B.H.J. Chang & W.-H. Li, 1993. Male-driven evolution of DNA sequences. Nature 362: 745–747.

    Article  PubMed  CAS  Google Scholar 

  • Simmons, M.J. & J.F. Crow, 1977. Mutations affecting fitness in Drosophila populations. Ann. Rev. Genet. 11: 49–78.

    Article  PubMed  CAS  Google Scholar 

  • Sommer, S.S., 1995. Recent human germ-line mutation: inferences from patients with hemophilia B. Trends Genet. 11: 141–147.

    Article  PubMed  CAS  Google Scholar 

  • Sommer, S.S. & R.P. Ketterling, 1996. The factor IX gene as a model for analysis of human germline mutations: An update. Hum. Mol. Genet. 5: 1505–1514.

    PubMed  CAS  Google Scholar 

  • Springer, M.S., E.H. Davidson & R.J. Britten, 1992. Calculation of sequence divergence from the thermal stability of DNA heteroduplexes. J. Mol. Evol. 34: 379–382.

    Article  PubMed  CAS  Google Scholar 

  • Takahata, N., Y. Satta & J. Klein, 1995. Divergence time and popu lation size in the lineage leading to modern humans. Theor. Pop. Biol. 48: 198–221.

    Article  CAS  Google Scholar 

  • Vogel, F. & R. Rathenberg, 1975. Spontaneous mutation in man. Adv. Hum. Genet. 5: 223–318.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, M.R. & F.S. Collins, 1991. Von Recklinghausen neurofi-bromatosis. Adv. Hum. Genet. 20: 267–307.

    Article  PubMed  CAS  Google Scholar 

  • Wallis, M., 1997. Function switching as a basis for bursts of rapid change during the evolution of pituitary growth hormone. J. Mol. Evol. 44: 348–350.

    Article  PubMed  CAS  Google Scholar 

  • Whitfield, L.S., J.E. Sulston & P.N. Goodfellow, 1995. Sequence variation of the human Y chromosome. Nature 378: 379–380.

    Article  PubMed  CAS  Google Scholar 

  • Wilcox, A.J., C.R. Weinberg & D.D. Baird, 1995. Timing of sexual intercourse in relation to ovulation: Effects on the probability of conception, survival of the pregnancy, and sex of the baby. New Eng. J. Med. 333: 1517–1521.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe, K.H. & P.M. Sharp, 1993. Mammalian gene evolution nucleotide sequence divergence between mouse and rat. J. Mol. Evol. 37: 441–456.

    Article  PubMed  CAS  Google Scholar 

  • Woodruff, R.C., B.E. Slatko & J.N. Thompson Jr., 1983. H. L. Carson, & J.N. Thompson, Jr. Academic Press, New York

    Google Scholar 

  • Yang, A.S., M.L. Gonzalgo, J.M. Zingg, R.P. Millar, J.D. Buckley & P.A. Jones, 1996. The rate of CpG mutation in Alu repetitive elements within the p53 tumor suppressor gene in the primate germline. J. Mol. Biol. 258: 240–250.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, J., S.J. Spier, J. Beech & E.P. Hoffman, 1994. Pathophysiology of sodium channelopathies: Correlation of normal-mutant mRNA ratios with clinical phenotype in dominantly inherited periodic paralysis. Hum. Mol. Genet. 3: 1599–1603.

    Article  PubMed  CAS  Google Scholar 

  • Zuckerkandl, E., 1992. Revisiting junk DNA. J. Mol. Evol. 34: 259–271.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kondrashov, A.S. (1998). Measuring spontaneous deleterious mutation process. In: Woodruff, R.C., Thompson, J.N. (eds) Mutation and Evolution. Contemporary Issues in Genetics and Evolution, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5210-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5210-5_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6193-3

  • Online ISBN: 978-94-011-5210-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics