Skip to main content

Some evolutionary consequences of deleterious mutations

  • Chapter
Mutation and Evolution

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 7))

  • 637 Accesses

Abstract

Most mutations with observable phenotypic effects are deleterious. Studies of Drosophila and inbred plant populations suggest that a new individual may have a mean number of new deleterious mutations that exceeds one-half. Most of these have relatively small homozygous effects and reduce fitness by 1–2% when heterozygous. Several striking features of present-day organisms have apparently evolved in response to the constant input of deleterious alleles by recurrent mutation. For example, the adaptations of hermaphroditic organisms for outcrossing have been widely interpreted in terms of the benefits of avoiding the reduced fitness of inbred progeny, which is partly due to deleterious mutations. Population genetic models of modifiers of the breeding system in the presence of genome-wide deleterious mutation are reviewed and their predictions related to genetic and comparative data. The evolution of degenerate Y chromosomes is a phenomenon that may be caused by the accumulation of deleterious mutations. The population genetic mechanisms that can drive this degeneration are reviewed and their significance assessed in the light of available data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aide, T.M., 1986. The influence of wind and animal pollination on variation in outcrossing rates. Evolution 40: 434–435.

    Article  Google Scholar 

  • Antonovics, J., 1968. Evolution in closely adjacent plant populations.V.Evolution of self-fertility. Heredity 23: 219–238.

    Article  Google Scholar 

  • Ashburner, M., 1989. Drosophila. A Laboratory Handbook. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Baker, H.G., 1959. Reproductive methods as a factor in speciation in flowering plants. Cold Spr. Harb. Symp. Quant. Biol. 24: 9–24.

    Article  Google Scholar 

  • Barrett, S.C.H. & CG. Eckert, 1990. Variation and evolution of plant mating systems, pp. 229–254 in biological approaches and evolutionary trends in plants, edited by S. Kawano. Academic Press, New York.

    Google Scholar 

  • Barrett, S.C.H. & D. Charlesworth, 1991. Effects of a change in the level of inbreeding on the genetic load. Nature 352: 522–524.

    Article  PubMed  CAS  Google Scholar 

  • Barrett, S.C.H. L.D. Harder & A.C. Worley, 1996. Comparative biology of plant reproductive traits. Phil. Trans. Roy. Soc. Lond. B 351: 1272–1280.

    Google Scholar 

  • Barton, N.H., 1995. Linkage and the limits to natural selection. Genetics 140: 821–884.

    PubMed  CAS  Google Scholar 

  • Bawa, K.S., 1980. Evolution of dioecy in flowering plants. Ann. Rev. Ecol. Syst. 11: 15–39.

    Article  Google Scholar 

  • Berry, A.J. & M. Kreitman, 1993. Molecular analysis of an allozyme cline: alcohol dehydrogenase in Drosophila melanogaster on the East Coast of North America. Genetics 129: 869–893.

    Google Scholar 

  • Berry, A.J., J.W. Ajioka & M. Kreitman, 1991. Lack of polymorphism on the Drosophila fourth chromosome resulting from selection. Genetics 129: 1111–1117.

    PubMed  CAS  Google Scholar 

  • Birky, C.W., 1988. Evolution and variation in plant chloroplast and mitochondrial DNA, pp. 23–53 in plant evolutionary biology, edited by L. D. Gottlieb & S.K. Jain. Chapman and Hall, London.

    Chapter  Google Scholar 

  • Birky, C.W. & J.B. Walsh, 1988. Effects of linkage on rates of molecular evolution. Proc. Natl. Acad. Sci. USA 85: 6414–6418.

    Article  PubMed  CAS  Google Scholar 

  • Brunet, J., 1990. Gender specialization of flowers within inflores cences of hermaphroditic plants. Ph.D. Dissertation, State University of New York, Stony Brook.

    Google Scholar 

  • Bryant, E.H., L.M. Meffert & L.M. McCommas, 1990. Fitness rebound in serially bottlenecked populations of the house fly. Amer. Nat. 136: 542–549.

    Article  Google Scholar 

  • Bull, J.J., 1983. Evolution of Sex Determining Mechanisms, Benjamin Cummings, Menlo Park, CA.

    Google Scholar 

  • Campbell, R.B., 1986. The interdependence of mating structure and inbreeding depression. Theoret. Pop. Biol. 30: 232–244.

    Article  CAS  Google Scholar 

  • Campbell, D.R. & N.M. Waser, 1987. The evolution of plant mating systems: multilocus simulations of pollen dispersal. Amer. Nat. 129: 593–609.

    Article  Google Scholar 

  • Charlesworth, B., 1978. Model for evolution of Y chromosomes and dosage compensation. Proc. Natl. Acad. Sci. USA 75: 5618–5622.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B., 1980. The cost of sex in relation to mating system. J. Theoret. Biol. 84: 655–671.

    Article  CAS  Google Scholar 

  • Charlesworth, B., 1987. The heritability of fitness, pp. 21–40 in Sexual Selection: testing the alternatives. Dahlem Conference, edited by J.W. Bradbury & M. Andersson. Springer-Verlag, Berlin.

    Google Scholar 

  • Charlesworth, B., 1990. Mutation-selection balance and the evolutionary advantage of sex and recombination. Genet. Res. 55: 199–221.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B., 1991. The evolution of sex chromosomes. Science 251: 1030–1033.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B., 1994. The effect of background selection against deleterious alleles on weakly selected, linked variants. Genet. Res. 63: 213–228.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B., 1996. The evolution of chromosomal sex deter mination and dosage compensation. Curr. Biol. 6: 149–162.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B., 1998. The effect of synergistic epistasis on the inbreeding load. Genet. Res. (in press).

    Google Scholar 

  • Charlesworth, B. & D. Charlesworth, 1997. Rapid fixation of deleterious alleles can be caused by Muller’s ratchet. Genet. Res. 70: 63–73.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B. & D.S. Guttman, 1996. Reductions in genetic variation in Drosophila and E. coli caused by selection at linked sites. J. Genet. 75: 49–61.

    Article  Google Scholar 

  • Charlesworth, B. & K.A. Hughes, 1996. Age-specific inbreeding depression and components of genetic variance in relation to the evolution of senescence. Proc. Natl. Acad. Sci. USA 93: 6140–6145.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B. & K.A. Hughes, 1998. The maintenance of genetic variation in life-history traits, pp.xxx–xxx in evolutionary Genetics from molecules to morphology, edited by Singh, R.S. & C.B. Krimbas. Cambridge University Press, Cambridge (in press).

    Google Scholar 

  • Charlesworth, B., D. Charlesworth & M.T. Morgan, 1990. Genetic loads and estimates of mutation rates in very inbred plant Populations. Nature 347: 380–382.

    Article  Google Scholar 

  • Charlesworth, B., M.T. Morgan & D. Charlesworth, 1991. Multilocus models of inbreeding depression with synergistic selection and partial self-fertilisation. Genet. Res. 57: 177–194.

    Article  Google Scholar 

  • Charlesworth, B., M.T. Morgan & D. Charlesworth, 1993. The effect of deleterious mutations on neutral molecular variation. Genetics 134: 1289–1303.

    PubMed  CAS  Google Scholar 

  • Charlesworth, D., 1988. Evolution of homomorphic sporophytic self-incompatibility. Heredity 60: 445–453.

    Article  Google Scholar 

  • Charlesworth, D. & B. Charlesworth, 1978. Population genetics of partial male-sterility and the evolution of monoecy and dioecy. Heredity 41: 137–153.

    Article  Google Scholar 

  • Charlesworth, D. & B. Charlesworth, 1979. The evolution and break down of S-allele systems. Heredity 43: 41–55.

    Article  Google Scholar 

  • Charlesworth, D. & B. Charlesworth, 1981. Allocation of resources to male and female functions in hermaphrodites. Biol. J. Linn. Soc. 15: 57–74.

    Article  Google Scholar 

  • Charlesworth, D. & B. Charlesworth, 1990. Inbreeding depression with heterozygote advantage and its effect on selection for mod ifiers changing the outcrossing rate. Evolution 44: 870–888.

    Article  Google Scholar 

  • Charlesworth, D. & B. Charlesworth, 1995. Quantitative genetics in plants: the effect of breeding system on genetic variability. Evolution 49: 911–920.

    Article  Google Scholar 

  • Charlesworth, D. & M.T. Morgan, 1991. Allocation of resources to sex functions in flowering plants. Phil. Trans. Roy. Soc. Lond. B, 332: 91–102.

    Article  Google Scholar 

  • Charlesworth, D., E.E. Lyons & L.B. Litchfield, 1994. Inbreeding depression in two highly inbreeding populations of Leavenworthia. Proc. Royal Soc. Lond. B 258: 209–214.

    Article  Google Scholar 

  • Charlesworth, D., M.T. Morgan & B. Charlesworth, 1990. Inbreed ing depression, genetic load and the evolution of outcrossing rates in a multi-locus system with no linkage. Evolution 44: 1469–1489.

    Article  Google Scholar 

  • Charlesworth, D., M.T. Morgan & B. Charlesworth, 1992. The effect of linkage and population size on inbreeding depression due to mutational load. Genet. Res. 59: 49–61.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, D., M.T. Morgan & B. Charlesworth, 1993. Mutation accumulation in finite outbreeding and inbreeding populations. Genet. Res. 61: 39–56.

    Article  Google Scholar 

  • Charnov, E.L., J.M. Smith & J.J. Bull, 1976. Why be an her maphrodite?. Nature, London 263: 125–126.

    Article  Google Scholar 

  • Cockerham, C.C. & B.S. Weir, 1968. Sib-mating with two loci. Genetics 60: 629–640.

    PubMed  CAS  Google Scholar 

  • Crow, J.F., 1970. Genetic loads and the cost of natural selection, pp. 128–177 in mathematical topics in population genetics, edited by K. Kojima. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Crow, J.F., 1992. Mutation, mean fitness, and genetic load. Oxf. Surv. Evol. Biol. 9: 3–42.

    Google Scholar 

  • Crow, J.F. & M. Kimura, 1970. An Introduction to Population Genetics Theory, Harper and Row, New York.

    Google Scholar 

  • Crow, J.F. & M.J. Simmons, 1983. The mutation load in Drosophila, pp. 1–35 in The genetics and biology of Drosophila, edited by M. Ashburner, H.L. Carson & J.N. Thompson. Academic Press, London.

    Google Scholar 

  • Damgaard, C., D. Couvet & V. Loeschke, 1992. Partial selfing as an optimal mating strategy. Heredity 69: 289–295.

    Article  Google Scholar 

  • Darwin, C.R., 1876. The Effects of Cross and Self Fertilization in the Vegetable Kingdom. John Murray, London.

    Google Scholar 

  • Darwin, C.R., 1877. The Different Forms of Flowers on Plants of the Same Species. ed. John Murray, London.

    Google Scholar 

  • Deng, H.-W. & M. Lynch, 1996. Estimation of deleterious-mutation parameters in natural populations. Genetics 144: 349–360.

    PubMed  CAS  Google Scholar 

  • Falconer, D.S. & T.F.C. Mackay, 1996. An Introduction to Quanti tative Genetics. Fourth ed. Longman, London.

    Google Scholar 

  • Felsenstein, J. & S. Yokoyama, 1976. The evolutionary advantage of recombination. II. Individual selection for recombination. Genetics 83: 845–859.

    CAS  Google Scholar 

  • Fenster, C.B. & S.C.H. Barrett, 1994. Inheritance of matingsystem modifier genes in Eichhornia paniculata (Pontederiaceae). Heredity 72: 433–445.

    Article  Google Scholar 

  • Fenster, C.B. & K. Ritland, 1994. Quantitative genetics of mating system divergence in the yellow monkeyflower species complex. Heredity 73: 422–435.

    Article  Google Scholar 

  • Fisher, R.A., 1930. The Genetical Theory of Natural Selection, Clarendon Press, Oxford.

    Google Scholar 

  • Fisher, R.A., 1941. Average excess and average effect of a gene substitution. Ann. Eugen. 11: 53–63.

    Google Scholar 

  • Fu, Y.-B. & K. Ritland, 1993. Evidence for the partial dominance of viability genes in Mimulus guttatus. Genetics 136: 323–331.

    Google Scholar 

  • Fu, Y.-B. & K. Ritland, 1994. On estimating the linkage of marker genes to viability genes controlling inbreeding depression. Theoret. Appl. Genet. 88: 925–932.

    Article  Google Scholar 

  • Gabriel, W., M. Lynch & R. Bürger, 1993. Muller’s ratchet and mutational meltdowns. Evolution 47: 1744–1757.

    Article  Google Scholar 

  • Gessler, D.G., 1995. The constraints of finite size in asexual Populations and the rate of the ratchet. Genet. Res. 66: 241–253.

    Article  PubMed  CAS  Google Scholar 

  • Givnish, T.J., 1982. Outcrossing versus ecological constraints in the evolution of dioecy. Amer. Nat. 119: 849–865.

    Article  Google Scholar 

  • Graves, J.A.M., 1995. The origin and function of the mammalian Y chromosome and Y-borne genes-an evolving understanding. Bioessays 17: 311–320.

    Article  PubMed  CAS  Google Scholar 

  • Gregorius, H.-R., 1982. Selection in plant populations of effectively infinite size. II. Protectedness of a biallelic polymorphism. J. Theoret. Biol. 96: 689–705.

    Google Scholar 

  • Hackstein, J.H.P., R. Hochstenbach, E. Hauschteck-Jungen & L.W. Beukeboom, 1996. Is the Y chromosome of Drosophila an evolved supernumerary chromosome?. Bioessays 18: 317–323.

    Article  PubMed  CAS  Google Scholar 

  • Haigh, J., 1978. The accumulation of deleterious genes in a population. Theor. Pop. Biol. 14: 251–267.

    Article  CAS  Google Scholar 

  • Haidane, J.B.S., 1927. A mathematical theory of natural and artificial selection. V. Selection and mutation. Proc. Camb. Phil. Soc. 23: 838–844.

    Article  Google Scholar 

  • Haidane, J.B.S., 1949. The association of characters as a result of inbreeding. Ann. Eugen. 15: 15–23.

    Google Scholar 

  • Hamilton, W.D., 1967. Extraordinary sex ratios. Science 156: 477–488.

    Article  PubMed  CAS  Google Scholar 

  • Hedrick, P.W., 1994. Purging inbreeding depression and the proba bility of extinction: full-sib mating. Heredity 73: 363–372.

    Article  PubMed  Google Scholar 

  • Hedrick, P.W. & O. Muona, 1990. Linkage of viability genes to marker loci in selfing organisms. Heredity 64: 67–72.

    Article  Google Scholar 

  • Heller, J. & J. Maynard Smith, 1979. Does Muller’s ratchet work with selfing?. Genet. Res. 32: 289–293.

    Article  Google Scholar 

  • Higgs, P.G., 1994. Error thresholds and stationary mutant distributions in multi-locus diploid genetics models. Genet. Res. 63: 63–78.

    Article  Google Scholar 

  • Higgs, P.G. & G. Woodcock, 1995. The accumulation of mutations in asexual populations and the structure of genealogical trees in the presence of selection. J. Math. Biol. 33: 677–702.

    Article  Google Scholar 

  • Hilton, H. & J. Hey, 1996. DNA sequence variation at the Period locus reveals the history of species and speciation events in the Drosophila virilis group. Genetics 144: 1015–1025.

    PubMed  CAS  Google Scholar 

  • Holsinger, K.E., 1986. Dispersal and plant mating systems: the evolution of self-fertilization in subdivided populations. Evolution 40: 405–413.

    Article  Google Scholar 

  • Holsinger, K.E., 1988. Inbreeding depression doesn’t matter: the genetic basis of mating system evolution. Evolution 42: 1235–1244.

    Article  Google Scholar 

  • Holsinger, K.E., 1991. Mass action models of plant mating systems: the evolutionary stability of mixed mating systems. Amer. Nat. 138: 606–622.

    Article  Google Scholar 

  • Holsinger, K. E., M.W. Feldman & F.B. Christiansen, 1984. The evolution of self-fertilization in plants: a population genetic model. Amer. Nat. 124: 446–453.

    Article  Google Scholar 

  • Hopf, R., R.E. Michod, R.E. & M. Sanderson, 1987. On the effect of reproductive system on mutation load and the number of dele terious mutations. Theor. Pop. Biol. 33: 243–265.

    Article  Google Scholar 

  • Houle, D., K.A. Hughes, D.K. Hoffmaster, J.T. Ihara, S. Assimacopoulos & B. Charlesworth, 1994. The effect of spontaneous mutation on quantitative traits. I. Variances and covariances of life history traits. Genetics 138: 773–785.

    CAS  Google Scholar 

  • Houle, D., B. Morikawa & M. Lynch, 1996. Comparing mutational variabilities. Genetics 143: 1467–1483.

    PubMed  CAS  Google Scholar 

  • Hughes, K.A., 1995. The inbreeding decline and average domi nance of genes affecting male life-history characters in Drosophila melanogaster. Genet. Res. 65: 41–52.

    Article  PubMed  CAS  Google Scholar 

  • Husband, B.C. & D.W. Schemske, 1995. Evolution of the magnitude and timing of inbreeding depression in plants. Evolution 50: 54–70.

    Article  Google Scholar 

  • Iwasa, Y., A. Pomiankowski & S. Nee, 1991. The evolution of costly mate preferences. II. The handicap principle. Evolution 45: 1431–1442.

    Article  Google Scholar 

  • Jablonka, E. & M.J. Lamb, 1990. The evolution of heteromorphic sex chromosomes. Biol. Rev. 65: 249–276.

    Article  PubMed  CAS  Google Scholar 

  • Jarne, P., 1995. Mating system, bottlenecks and genetic polymor phism in hermaphroditic animals. Genet. Res. 65: 193–207.

    Article  Google Scholar 

  • Jarne, P. & D. Charlesworth, 1993. The evolution of the selling rate in functionally hermaphrodite plants and animals. Ann. Rev. Ecol. Syst. 23: 441–466.

    Article  Google Scholar 

  • Jenkins, C.D. & M. Kirkpatrick, 1995. Deleterious mutation and the evolution of genetic life-cycles. Evolution 49: 512–520.

    Article  Google Scholar 

  • Johnston, M.O. & D.J. Schoen, 1995. Mutation rates and dominance levels of genes affecting total fitness in two angiosperm species. Science 267: 226–229.

    Article  PubMed  CAS  Google Scholar 

  • Keightley, P.D., 1996. The nature of deleterious mutation load in Drosophila. Genetics 144: 1993–1999.

    PubMed  CAS  Google Scholar 

  • Keightley, P.D. & A. Caballero. 1997. Genomic mutation rate for fitness in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 94: 3823–3827.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M., 1962. On the probability of fixation of a mutant gene in a population. Genetics 47: 713–719.

    PubMed  CAS  Google Scholar 

  • Kimura, M. & T. Maruyama, 1966. The mutational load with epistatic gene interactions in fitness. Genetics 54: 1337–1351.

    PubMed  CAS  Google Scholar 

  • Kimura, M. & T. Ohta, 1971. Theoretical Topics in Population Genetics, Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Kirkpatrick, M., 1996. Good genes and direct selection in the evolution of mating preferences. Evolution 50: 2125–2140.

    Article  Google Scholar 

  • Kondrashov, A.S., 1984. Deleterious mutations as an evolutionary factor. I. The advantage of recombination. Genet. Res. 44: 199–217.

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov, A.S., 1985. Deleterious mutation as an evolutionary factor. II. Facultative apomixis and selling. Genetics 111: 635–653.

    PubMed  CAS  Google Scholar 

  • Kondrashov, A.S., 1993. Classification of hypotheses on the advantage of amphimixis. J. Heredity 84: 372–387.

    CAS  Google Scholar 

  • Kondrashov, A.S., 1994. Muller’s ratchet under epistatic selection. Genetics 136: 1469–1473.

    PubMed  CAS  Google Scholar 

  • Kondrashov, A.S., 1995. Dynamics of unconditionally deleterious mutations: Gaussian approximation and soft selection. Genet. Res. 65: 113–122.

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov, A.S. & J.F. Crow, 1991. Haploidy or diploidy: which is better?. Nature 351: 314–315.

    Article  PubMed  CAS  Google Scholar 

  • Kreitman, M., 1983. Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster. Nature 304: 412–417.

    Article  PubMed  CAS  Google Scholar 

  • Lande, R. & D.W. Schemske, 1985. The evolution of selffertilization and inbreeding depression in plants. I. Genetic models. Evolution 39: 24–40.

    Article  Google Scholar 

  • Latta, R. and K. Ritland, 1993. Models for the evolution of selfing under alternative modes of inheritance. Heredity 71: 1–10.

    Article  Google Scholar 

  • Li, W.-H. & L.A. Sadler, 1991. Low nucleotide diversity in man. Genetics 129: 513–523.

    PubMed  CAS  Google Scholar 

  • Lloyd, D.G., 1979. Some reproductive factors affecting the selection of self-fertilization in plants. Am. Nat. 113: 67–79.

    Article  Google Scholar 

  • Lloyd, D.G., 1980a. Benefits and handicaps of sexual reproduction. Evol. Biol. 13: 69–111.

    Article  Google Scholar 

  • Lloyd, D.G., 1980b. Demographic factors and mating patterns in angiosperms, pp. 67–88 in demography and evolution in plant populations, edited by O.T. Solbrig. Blackwell, Oxford.

    Google Scholar 

  • Lucchesi, J.C., 1978. Gene dosage compensation and the evolution of sex chromosomes. Science 202: 711–716.

    Article  PubMed  CAS  Google Scholar 

  • Lucchesi, J.C., 1993. How widespread is dosage compensation?. Sem. Dev. Biol. 4: 107–116.

    Article  Google Scholar 

  • Macnair, M.R., V.E. Macnair & B.E. Martin, 1989. Adaptive speciation in Mimulus: an ecological comparison of M. cupriphilus with its presumed progenitor M. guttatus. New Phytol. 112: 269–279.

    Article  Google Scholar 

  • Manning, J.T. & D.J. Thompson, 1984. Muller’s ratchet and the accumulation of favourable mutations. Acta Biotheor. 33: 219–225.

    Article  Google Scholar 

  • Maynard Smith, J., 1977. The sex habit in plants and animals, pp. 265–273 in measuring selection in natural populations, edited by F.B. Christiansen & T.M. Fenchel. Springer-Verlag, Berlin.

    Google Scholar 

  • Maynard Smith, J., 1978. The Evolution of Sex. Cambridge Univer sity Press, Cambridge.

    Google Scholar 

  • Maynard Smith, J. & J. Haigh, 1974. The hitch-hiking effect of a favorable gene. Genet. Res., Camb. 219: 1114–1116.

    Google Scholar 

  • Medawar, P.B., 1952. An Unsolved Problem of Biology. H.K. Lewis, London.

    Google Scholar 

  • Mitchell-Olds, T., 1995. Interval mapping of viability loci causing heterosis in Arabidopsis. Genetics 140: 1105–1109.

    PubMed  CAS  Google Scholar 

  • Moriyama, E.N. & J.R. Powell, 1996. Intraspecific nuclear DNA variation in Drosophila. Mol. Biol. Evol. 13: 261–277.

    Article  PubMed  CAS  Google Scholar 

  • Morton, N.E., J.F. Crow & H.J. Muller, 1956. An estimate of the mutational damage in man from data on consanguineous marriages. Proc. Natl. Acad. Sci. USA 42: 855–863.

    Article  PubMed  CAS  Google Scholar 

  • Mukai, T, S.I. Chigusa, L.E. Mettler & J.F. Crow, 1972. Mutation rate and dominance of genes affecting viability. Genetics 72: 335–355.

    PubMed  CAS  Google Scholar 

  • Muller, H.J., 1918. Genetic variability, twin hybrids and constant hybrids in a case of balanced lethal factors. Genetics 3: 422–499.

    PubMed  CAS  Google Scholar 

  • Muller, H.J., 1964. The relation of recombination to mutational advance. Mut. Res. 1: 2–9.

    Article  Google Scholar 

  • Muller, H.J., 1950. Our load of mutations. Am. J. Hum. Genet. 2: 111–176.

    PubMed  CAS  Google Scholar 

  • Nagylaki, T., 1976. A model for the evolution of self fertilization and vegetative reproduction. J. Theoret. Biol. 58: 55–58.

    Article  CAS  Google Scholar 

  • Narain, P., 1966. Effect of linkage on homozygosity of a population under mixed selfing and random mating. Genetics 54: 303–314.

    PubMed  CAS  Google Scholar 

  • Nei, M., 1970. Accumulation of nonfunctional genes on sheltered chromosomes. Am. Nat. 104: 311–322.

    Article  Google Scholar 

  • Nei, M. & D. Graur, 1984. The extent of protein polymorphism and the neutral mutation theory. Evol. Biol. 17: 73–118.

    Article  Google Scholar 

  • Ohnishi, O., 1977. Spontaneous and ethyl methanesulfonate-induced mutations controlling viability in Drosophila melanogaster. II. Homozygous effects of polygenic mutations. Genetics 87: 529–545.

    PubMed  CAS  Google Scholar 

  • Ohta, T. and C.C. Cockerham, 1974. Detrimental genes with partial selfing and effects on a neutral locus. Genet. Res., Camb. 23: 191–200.

    Article  Google Scholar 

  • Patterson, J.T. & W.S. Stone, 1952. Evolution in the Genus Drosophila. MacMillan, New York.

    Google Scholar 

  • Peck, J., 1994. A ruby in the rubbish: beneficial mutations, deleterious mutations, and the evolution of sex. Genetics 137: 597–606.

    PubMed  CAS  Google Scholar 

  • Perrot, V., S. Richerd & M. Valero, 1991. Transition from haploidy to diploidy. Nature 351: 315–317.

    Article  PubMed  CAS  Google Scholar 

  • Prügel-Bennett, A., 1997. Modelling evolving populations. J. Theor. Biol. 185: 81–96.

    Article  PubMed  Google Scholar 

  • Rice, W.R., 1987. Genetic hitch-hiking and the evolution of reduced genetic activity of the Y sex chromosome. Genetics 116: 161–167.

    PubMed  CAS  Google Scholar 

  • Rice, W.R., 1988. Heritable variation in fitness as a prerequisite for adaptive female choice: the effect of mutation-selection balance. Evolution 42: 817–820.

    Article  Google Scholar 

  • Rice, W.R., 1994. Degeneration of a nonrecombining chromosome. Science 263: 230–232.

    Article  PubMed  CAS  Google Scholar 

  • Russo, C.A.M., N. Takezaki & M. Nei, 1995. Molecular phylogeny and divergence times of Drosophilid species. Mol. Biol. Evol. 12: 391–404.

    PubMed  CAS  Google Scholar 

  • Saccheri, I.J., P.M. Brakefield & R.A. Nichols, 1996. Severe inbreed ing depression and rapid fitness rebound in the butterfly Bicyclus anyana (Satyridae). Evolution 50: 2000–2013.

    Article  Google Scholar 

  • Schemske, D.W. & R. Lande, 1985. The evolution of self fertilization and inbreeding depression in plants. II. Empirical observations. Evolution 39: 41–52.

    Google Scholar 

  • Schoen, D.J. & D.G. Lloyd, 1984. The selection of cleistogamy and heteromorphic diaspores. Bot. J. Linn. Soc. 23: 303–322.

    Article  Google Scholar 

  • Schoen, D.J., M.T. Morgan & T. Bataillon, 1996. How does selfpollination evolve? Inferences from floral ecology and molecular genetic variation. Phil. Trans. Roy. Soc. Lond. B 351: 1281–1290.

    Article  Google Scholar 

  • Schultz, S. & J.H. Willis, 1995. Individual variation in inbreeding depression: the roles of inbreeding history and mutation. Genetics 141: 1209–1223.

    PubMed  CAS  Google Scholar 

  • Segarra, C., E.R. Lozovskaya, G. Ribó, M. Aguadé & D.L. Hartl, 1995. PI clones from Drosophila melanogaster as markers to study the chromosomal evolution of Muller’s element A in two species of the obscura group of Drosophila. Chromosoma 104: 139–146.

    Google Scholar 

  • Shore, J.S. & S.C.H. Barrett, 1990. Quantitative genetics of floral characters in homostyled Turnera ulmifolia var angustifolia Willd (Turneraceae). Heredity 64: 105–112.

    Article  Google Scholar 

  • Singh, R.S. & L.R. Rhomberg, 1987. A comprehensive study of genic variation in natural populations of Drosophila melanogaster. I. Estimates of gene flow from rare alleles. Genetics 115: 313–322.

    CAS  Google Scholar 

  • Steinemann, M., S. Steinemann & F. Lottspeich, 1993. How Ychromosomes become genetically inert. Proc. Nat. Acad. Sci. USA 90: 5737–5741.

    Article  PubMed  CAS  Google Scholar 

  • Stephan, W., L. Chao & J.G. Smale, 1993. The advance of Muller’s ratchet in a haploid asexual population: approximate solutions based on diffusion theory. Genet. Res. 61: 225–232.

    Article  PubMed  CAS  Google Scholar 

  • Sved, J.A., 1971. An estimate of heterosis in Drosophila melanogaster. Genet. Res. 18: 97–105.

    Article  PubMed  CAS  Google Scholar 

  • Sved, J.A., 1975. Fitness of third chromosome homozygotes in Drosophila melanogaster. Genet. Res. 25: 197–200.

    Article  PubMed  CAS  Google Scholar 

  • Templeton, A.R. & B. Read, 1984. Factors eliminating inbreeding depression in a captive herd of Speke’s gazelle (Gazella spekei). Zoo Biol. 3: 177–199.

    Article  Google Scholar 

  • Thomson, J.D. & J. Brunet, 1990. Hypotheses for the evolution of dioecy in seed plants. Tr. Ecol. Evol. 5: 11–16.

    Article  CAS  Google Scholar 

  • Trouvé, S., F. Renaud, P. Durand & J. Jourdane, 1996. Selfing and outcrossing in a parasitic hermaphrodite helminth (Trematoda, Echinostomatidae). Heredity 77: 1–8.

    Article  Google Scholar 

  • Uyenoyama, M.K., 1986. Inbreeding and the cost of meiosis: the evolution of selfing in populations practicing biparental inbreeding. Evolution 40: 388–404.

    Article  Google Scholar 

  • Uyenoyama, M.K., 1988. On the evolution of genetic incompati bility systems. II. Initial increase of strong gametophytic self-incompatibility under partial selfing and half-sib mating. Amer. Nat. 131: 700–722.

    Article  Google Scholar 

  • Uyenoyama, M.K., 1989. On the evolution of genetic incompatibility systems. V. Origin of sporophytic self-incompatibility in response to overdominance in viability. Theoret. Pop. Biol. 36: 339–365.

    CAS  Google Scholar 

  • Uyenoyama, M.K. & D.M. Waller, 1991a. Coevolution of selffertilization and inbreeding depression.I.Genetic modification in response to mutation-selection balance at one and two loci. Theoret. Pop. Biol. 40: 14–47.

    Article  CAS  Google Scholar 

  • Uyenoyama, M.K. & D.M. Waller, 1991b. Coevolution of selffertilization and inbreeding depression.II.Symmetric overdom inance in viability. Theoret. Pop. Biol. 40: 47–77.

    Article  CAS  Google Scholar 

  • Uyenoyama, M.K. & D.M. Waller, 1991c. Coevolution of selffertilization and inbreeding depression.III.Homozygous lethal mutations at multiple loci. Theoret. Pop. Biol. 40: 173–210.

    Article  CAS  Google Scholar 

  • Waller, D.M., 1986. Is there disruptive selection for selffertilization?. Amer. Nat. 128: 421–426.

    Article  Google Scholar 

  • Westergaard, M., 1958. The mechanism of sex determination in dioecious plants. Adv. Genet. 9: 217–281.

    Article  PubMed  CAS  Google Scholar 

  • White, M.J.D., 1973. Animal Cytology and Evolution. 3rd ed. Cambridge University Press, Cambridge.

    Google Scholar 

  • Wright, S., 1977. Evolution and the genetics of populations, Vol. 3. Experimental Results and Evolutionary Deductions. Univ. of Chicago Press, Chicago.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Charlesworth, B., Charlesworth, D. (1998). Some evolutionary consequences of deleterious mutations. In: Woodruff, R.C., Thompson, J.N. (eds) Mutation and Evolution. Contemporary Issues in Genetics and Evolution, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5210-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5210-5_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6193-3

  • Online ISBN: 978-94-011-5210-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics