Skip to main content
  • 239 Accesses

Abstract

There are several different approaches to bioanalytical measurements, including biosensors, flow injection analysis, and separation techniques such as capillary electrophoresis. Automating the use of all these techniques usually involves incorporation into flow systems, a concept which is known as the total analysis system (TAS). Optimization of analytical performance in most flow systems, particularly those which are based on high resolution separation methods, can be accomplished through miniaturization of the system to a μTAS. The use of microfabricated devices has become a popular approach for realizing miniaturized analysis systems for measurements on a sub-μL scale. This presentation will focus on the use of μTAS-type systems, both biosensor and non-biosensor based, for biosensing applications. A brief introduction to the analytical methods available for adaptation to bioanalytical μTAS is included in this review. Finally, the potential of μTAS to combine the best aspects of both stand-alone biosensors and benchtop biosensing systems will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Thompson and U.J. Krull, Biosensors and the transduction of molecular recognition, Anal. Chem. 63 (1991), 393A–405A.

    Google Scholar 

  2. T.A. Kelly and G.D. Christian, Capillary flow injection analysis for enzyme assay with fluorescence detection, Anal. Chem. 54 (1982), 1444–1445.

    Article  Google Scholar 

  3. J. Ruzicka and E.H. Hansen, Flow Injection Analysis, 2nd Edition, Wiley, New York, 1988.

    Google Scholar 

  4. G. Blankenstein, U. Spohn, F. Preuschoff, J. Thömmes, and M.-R. Kula, Multichannel flow-injection-analysis biosensor system for on-line monitoring of glucose, lactate, glutamine, glutamate and ammonia in animal cell culture, Biotechnol. Appl. Biochem. 20 (1994), 291–307.

    Google Scholar 

  5. M.M. Dittmann, K. Wienand, F. Bek, and G.P. Rozing, Theory and practice of capillary electrochromatography, LC-GC Intl. 13 (1995), 800–814.

    Google Scholar 

  6. G.J.M. Bruin and A. Paulus, Biopolymer separations with capillary electrophoresis, Anal. Methods Instrum. 2 (1995), 3–26.

    Google Scholar 

  7. N.M. Schultz and R.T. Kennedy, Rapid immunoassays using capillary electrophoresis with fluorescence detection, Anal. Chem. 65 (1993), 3161–3165.

    Article  Google Scholar 

  8. O.-W. Reif, R. Lausch, T. Scheper, and R. Freitag, Fluorescein isothiocyanate-labeled protein G as an affinity ligand in affinity/immunocapillary electrophoresis with fluorescence detection, Anal. Chem. 66 (1994), 4027–4033.

    Article  Google Scholar 

  9. K. Shimura and B. Karger, Affinity probe capillary electrophoresis: analysis of recombinant human growth hormone with a fluorescent labeled antibody fragment, Anal. Chem. 66 (1994), 9–15.

    Article  Google Scholar 

  10. N.M. Schultz, L. Huang, and R.T. Kennedy, Capillary electrophoresis-based immunoassay to determine insulin content and insulin secretion from single islets of Langerhans, Anal. Chem. 67 (1995), 924–929.

    Article  Google Scholar 

  11. D. Schmalzing, W. Nashabeh, X.-W. Yao, R. Mhatre, F.E. Regnier, N.B. Afeyan, and M. Fuchs, Capillary electrophoresis-based immunoassay for Cortisol in serum, Anal. Chem. 67 (1995), 606–612.

    Article  Google Scholar 

  12. L. Tao and R.T. Kennedy, On-line competitive immunoassay for insulin based on capillary electrophoresis with laser-induced fluorescence detection, Anal. Chem. 68 (1996), 3899–3906.

    Article  Google Scholar 

  13. J. Bao and F.E. Regnier, Ultramicro enzyme assays in a capillary electrophoretic system, J. Chromatog. 608 (1992), 217–224.

    Article  Google Scholar 

  14. D. Wu and F.E. Regnier, Native protein separations and enzyme microassays by capillary zone and gel electrophoresis, Anal. Chem. 65 (1993), 2029–2035.

    Article  Google Scholar 

  15. H.M. Widmer, Trends in industrial analytical chemistry, Trends Anal. Chem. 2 (1983), vm-x.

    Google Scholar 

  16. A. Manz, N. Graber, and H.M. Widmer, Miniaturized total chemical analysis systems: a novel concept for chemical sensing, Sensors Actuators B 1 (1990), 244–248.

    Article  Google Scholar 

  17. see, for e.g., (a) Micro Total Analysis Systems (A. Van den Berg, P. Bergveld, eds.; Kluwer Academic Publishers, Dordrecht) 1995, 1. (b) Proceedings of the 2nd International Symposium on Miniaturized Total Analysis Systems, μTAS’96 (Basel, November 19–22, 1996) 1996.

    Google Scholar 

  18. A. Manz, Y. Miyahara, J. Miura, Y. Watanabe, H. Miyagi, and K. Sato, Design of an open-tubular column liquid chromatograph using silicon chip technology, Sensors Actuators B 1 (1990), 249–255.

    Article  Google Scholar 

  19. G. Ocvirk, E. Verpoorte, A. Manz, M. Grasserbauer, and H.M. Widmer, High performance liquid chromatography partially integrated onto a silicon chip, Anal. Methods Instrum. 2 (1995), 74–82.

    Google Scholar 

  20. S. Cowen and D.H. Craston, An on-chip miniature liquid chromatography system: design, construction and characterization, Micro Total Analysis Systems (A. Van den Berg, P. Bergveld, eds.; Kluwer Academic Publishers, Dordrecht) 1995, 295–298.

    Chapter  Google Scholar 

  21. E.M.J. Verpoorte, B.H. Van der Schoot, S. Jeanneret, A. Manz, H.M. Widmer, and N.F. de Rooij, Three-dimensional micro flow manifolds for miniaturized chemical analysis systems, J. Micromech. Microeng. 4 (1994), 246–256.

    Article  Google Scholar 

  22. A Van den Berg and P. Bergveld, Developments of μTAS concepts at the MESA research institute, Proceedings of the 2nd International Symposium on Miniaturized Total Analysis Systems, μTAS’96 (Basel, November 19-22, 1996) 1996, 9–15.

    Google Scholar 

  23. P. Woias, M. Richter, E. Yacoub-George, H. Wolf, and T. Abel, A micromachined open tubular reactor for heterogeneous immunoassays, Proceedings of the 2n International Symposium on Miniaturized Total Analysis Systems, μTAS’96 (Basel, November 19-22, 1996) 1996, 256.

    Google Scholar 

  24. D.J. Strike, P-Thiébaud, A.C. Van der Sluis, M. Koudelka-Hep, and N.F. de Rooij, Glucose measurement using a micromachined open tubular heterogeneous enzyme reactor (MOTHER), Microsystem Technologies 1 (1994), 48–50.

    Article  Google Scholar 

  25. J. Drott, K. Lindström, L. Rosengren, and T. Laurell, Porous silicon as the carrier matrix in microstructured enzyme reactors yielding high enzyme activities, J. Micromech. Microeng. 7(1997), 14–23.

    Article  Google Scholar 

  26. A. Manz, C.S. Effenhauser, N. Burggraf, D.J. Harrison, K. Seiler, and K. Fluri, Electroosmotic pumping and electrophoretic separations for miniaturized chemical analysis systems, J. Micromech. Microeng. 4 (1994), 257–265.

    Article  Google Scholar 

  27. F. Von Heeren, E. Verpoorte, A. Manz, and W. Thormann, Characterization of electrophoretic sample injection and separation in a gel-filled cyclic planar microstruture, J. Microcolumn Sep. 8 (1996), 373–381.

    Article  Google Scholar 

  28. S.C. Jacobson, R. Hergenröder, L.B. Koutny, R.J. Warmack, and J.M. Ramsey, Effects of injection schemes and column geometry on the performance of microchip electrophoresis devices, Anal. Chem. 66 (1994), 1107–1113.

    Article  Google Scholar 

  29. D.E. Raymond, A. Manz, and H.M. Widmer, Continuous sample pretreatment using a free-flow electrophoresis device integrated onto a silicon chip, Anal. Chem. 66 (1994), 2858–2865.

    Article  Google Scholar 

  30. 30.D.E. Raymond, A. Manz, and H.M. Widmer, Continuous separation of high molecular weight compounds using a microliter volume free-flow electrophoresis microstructure, Anal. Chem. 68 (1996), 2515–2522.

    Article  Google Scholar 

  31. S.C. Jacobson, R. Hergenröder, L.B. Koutny, and J.M. Ramsey, Open channel electrochromatography on a microchip, Anal. Chem. 66 (1994), 2369–2373.

    Article  Google Scholar 

  32. A.W. Moore Jr., S.C. Jacobson, and J.M. Ramsey, Microchip separations of neutral species via micellar electrokinetic capillary chromatography, Anal. Chem. 67 (1995), 4184–4189.

    Article  Google Scholar 

  33. 33.F. Von Heeren, E. Verpoorte, A. Manz, and W. Thormann, Micellar electrokinetic chromatography separations and analyses of biological samples on a cyclic planar microstructure, Anal. Chem. 68 (1996), 2044–2053.

    Article  Google Scholar 

  34. J.P. Kutter, S.C. Jacobson, and J.M. Ramsey, Integrated microchip device with electrokinetically controlled solvent mixing for isocratic and gradient elution in micellar electrokinetic chromatography, Anal. Chem. 69 (1997), 5165–5171.

    Article  Google Scholar 

  35. D.J. Harrison, A. Manz, Z. Fan, H. Lödi, and H.M. Widmer, Capillary electrophoresis and sample injection systems integrated on a planar glass chip, Anal. Chem. 64 (1992), 1926–1932.

    Article  Google Scholar 

  36. A. Manz, D.J. Harrison, E.M.J. Verpoorte, J.C. Fettinger, H. Lödi, and H.M. Widmer, Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: capillary electrophoresis on a chip, J. Chromatog. 593 (1992), 253–258.

    Article  Google Scholar 

  37. K. Seiler, D.J. Harrison, and A. Manz, Planar glass chips for capillary electrophoresis: repetitive sample injection, quantitation, and separation efficiency, Anal. Chem. 65 (1993), 1481–1488.

    Article  Google Scholar 

  38. D.J. Harrison, K. Fluri, K. Seiler, Z. Fan, C.S. Effenhauser, and A. Manz, Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip, Science 261(1993) 895–897.

    Article  Google Scholar 

  39. C.S. Effenhauser, A. Manz, and H.M. Widmer, Glass chips for high-speed capillary electrophoresis separations with submicrometer plate heights, Anal. Chem. 65 (1993) 3550–3560.

    Article  Google Scholar 

  40. C.S. Effenhauser, A. Paulus, A. Manz, and H.M. Widmer, High speed separation of “antisense” oligonucleotides on a micromachined capillary electrophoresis device, Anal. Chem. 66 (1994), 2949–2953.

    Article  Google Scholar 

  41. S.C. Jacobson, R. Hergenröder, L.B. Koutny, and J.M. Ramsey, High-speed separations on a microchip, Anal. Chem. 66 (1994), 1114–1118.

    Article  Google Scholar 

  42. N. Burggraf, A. Manz, N.F. de Rooij, and H.M. Widmer, Synchronized cyclic capillary electrophoresis: a novel concept for high-performance separations using low voltages Anal. Methods Instrum. 1 (1993), 55–59.

    Google Scholar 

  43. N. Burggraf, A. Manz, C.S. Effenhauser, E. Verpoorte, N.F. de Rooij, and H.M. Widmer, Synchronized cyclic capillary electrophoresis-a novel approach to ion separations in solution, J. High Resolut. Chromatog. 16 (1993), 594–596.

    Article  Google Scholar 

  44. N. Burggraf, A. Manz, E. Verpoorte, C.S. Effenhauser, H.M. Widmer, and N.F. de Rooij, A novel approach to ion separations in solution: synchronized cyclic capillary electrophoresis, Sensors Actuators B 20 (1994), 103–110.

    Article  Google Scholar 

  45. D.J. Harrison, P.G. Glavina, and A. Manz, Towards miniaturized electrophoresis and chemical analysis systems on silicon: an alternative to chemical sensors, Sensors Actuators B 10 (1993), 107–116.

    Article  Google Scholar 

  46. A.T. Woolley and R.A. Mathies, Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips, Proc. Natl. Acad. Sci. USA 91 (1994)11348–11352.

    Article  Google Scholar 

  47. 47.A. Manz, Miniaturized chemical analysis systems based on electroosmotic flow, Proceedings of the Tenth Annual International Workshop on Micro Electro Mechanical Systems (Nagoya, Japan, January 26-30, 1997), 1997, 14–18.

    Google Scholar 

  48. R. Freaney, A. McShane, T.V. Keaveny, M. McKenna, K. Rabenstein, F.W. Scheller, D. Pfeiffer, G. Urban, I. Moser, G. Jobst, A, Manz, E. Verpoorte, H.M. Widmer, D. Diamond, E. Dempsey, F.J.S. de Viteri, and M. Smyth, Novel instrumentation for real-time monitoring using miniaturized flow systems with integrated biosensors, Ann. Clin. Biochem. 34 (1997), 291–302.

    Google Scholar 

  49. E. Dempsey, D. Diamond, M.R. Smyth, G. Urban, G. Jobst, I. Moser, E.M.J. Verpoorte, A. Manz, H.M. Widmer, K. Rabenstein, and R. Freaney, Design and development of a miniaturised total chemical analysis system for on-line lactate and glucose monitoring in biological samples, Anal. Chim. Acta 346 (1997), 341–349.

    Article  Google Scholar 

  50. M. Busch, J. Schmidt, S.A. Rothen, C. Leist, B. Sonnleitner, and E. Verpoorte, µTAS meets biotechnology: micromachined flow systems combined with biosensor arrays for bioprocess monitoring, Proceedings of the 2nd International Symposium on Miniaturized Total Analysis Systems, μTAS’96 (Basel, November 19-22, 1996) 1996, 120–121.

    Google Scholar 

  51. A.G. Hadd, D.E. Raymond, J.W. Halliwell, S.C. Jacobson, and J.M. Ramsey, Microchip device for performing enzyme assays, Anal. Chem. 69 (1997), 3407–3412.

    Article  Google Scholar 

  52. L.B. Koutny, D. Schmalzing, T.A. Taylor, and M. Fuchs, Microchip electrophoretic immunoassay for serum Cortisol, Anal. Chem. 68 (1996), 18–22.

    Article  Google Scholar 

  53. N. Chiem and D.J. Harrison, Microchip-based capillary electrophoresis for immunoassays: analysis of monoclonal antibodies and theophylline, Anal. Chem. 69 (1997), 373–378.

    Article  Google Scholar 

  54. D. Schmalzing, L.B. Koutny, T.A. Taylor, W. Nashabeh, and M. Fuchs, Immunoassay for thyroxine (T4) in serum using capillary electrophoresis and micromachined devices, J. Chromatog. B 697 (1997), 175–180.

    Article  Google Scholar 

  55. F. Von Heeren, E. Verpoorte, A. Manz, and W. Thormann, Micellar electrokinetic chromatography separations and analyses of biological samples on a cyclic planar microstructure, Anal. Chem. 68 (1996), 2044–2053.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Verpoorte, E. (1998). From Biosensors to Biosensing Systems. In: van den Berg, A., Bergveld, P. (eds) Sensor Technology in the Netherlands: State of the Art. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5010-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5010-1_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6103-2

  • Online ISBN: 978-94-011-5010-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics