Skip to main content

Solar UV Radiation Induced Variations in the Lower Stratosphere and Upper Troposphere: A Review

  • Conference paper
Solar Electromagnetic Radiation Study for Solar Cycle 22
  • 183 Accesses

Abstract

Several types of measurements (ozone, temperature, geopoten-tial height) indicate the existence of a quasi-decadal oscillation (QDO) of the lower stratosphere that has been in phase with the Schwabe solar activity cycle for more than three cycles. Although a solar cycle variation of ozone is expected from photochemical considerations, the observed variation has an altitude and latitude dependence that differs substantially from the predictions of current two-dimensional stratospheric models. In agreement with geopotential height and temperature data for the lower stratosphere, the maximum amplitude of the apparent solar variation of total ozone in the northern hemisphere occurs near 30° latitude in winter and spring. This property as well as other observed characteristics of the QDO suggest that wave-mean-flow interactions may modify and enhance the solar cycle variation of the lower stratosphere in the northern winter. Indirect perturbations of tropospheric dynamics are predicted by several recent global circulation model simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angell, J. K. (1989) On the relation between atmospheric ozone and sunspot number, J. Climate,2, 1404–1416.

    Article  ADS  Google Scholar 

  • Balachandran, N. K. and D. Rind (1995) Modeling the effects of UV variability and the QBO on the troposphere / stratosphere system. Part I: The middle atmosphere, J. Climate, 8, 2058–2079.

    Article  ADS  Google Scholar 

  • Brasseur, G. (1993) The response of the middle atmosphere to long-term and short-term solar variability: A two-dimensional model, J. Geophys. Res., 98, 23079–23090.

    Article  ADS  Google Scholar 

  • Brown, G. M. and J. I. John (1979) Solar cycle influences in tropospheric circulation, J. Atrnos. Terr. Phys., 41, 43–52.

    Article  ADS  Google Scholar 

  • Chandra, S. and R. McPeters (1994) The solar cycle variation of ozone in the stratosphere inferred from Nimbus 7 and NOAA 11 satellites, J. Geophys. Res., 99, 20665–20671.

    Article  ADS  Google Scholar 

  • Crowley, T. J. and K.-Y. Kim (1996) Comparison of proxy records of climate change and solar forcing, Geophys. Res. Lett., 23, 359–362.

    Article  ADS  Google Scholar 

  • Dütsch, H. U., J. Bader, and J. Staehelin (1991) Separation of solar effects on ozone from anthropogenically produced trends, J. Geomagn. Geoelectr., 43, Supplement, Part 2, 657–665.

    Article  Google Scholar 

  • Eddy, J. A. (1977) Climate and the changing sun, Climate Change, 1, 173–190.

    Article  Google Scholar 

  • Fleming, E. L., S. Chandra, C. H. Jackman, D. B. Considine, and A. R. Douglass (1995) The middle atmospheric response to short and long term solar UV variations: Analysis of observations and 2D model results, J. Atmos. Terr. Phys., 57, 333–365.

    Article  ADS  Google Scholar 

  • Granier, C. and G. Brasseur (1992) Impact of heterogeneous chemistry on model predictions of ozone changes, J. Geophys. Res., 97, 18015–18033.

    Article  ADS  Google Scholar 

  • Gray, L. J. and J. A. Pyle (1989) A two-dimensional model of the quasi-biennial oscillation of ozone, J. Atmos. Sci., 46, 203–220.

    Article  ADS  Google Scholar 

  • Haigh, J. D. (1994) The role of stratospheric ozone in modulating the solar radiative forcing of climate, Nature, 370, 544–546.

    Article  ADS  Google Scholar 

  • Haigh, J. D. (1996) On the impact of solar variability on climate, Science, 272, 981–984.

    Article  ADS  Google Scholar 

  • Holton, J. R. (1994), The quasi-biennial oscillation in the Earth’s atmosphere and its links to longer period variability, in The Solar Engine and its Influence on Terrestrial Atmosphere and Climate, E. Nesme-Ribes, ed., NATO ASI Series, Vol. 125, pp. 259–273, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Hood, L. L. (1996) The solar cycle variation of total ozone: Dynamical forcing in the lower stratosphere, J. Geophys. Res., in press.

    Google Scholar 

  • Hood, L. L., and J. Jirikowic (1990) Recurring variations of probable solar origin in the atmospheric Δ14C time record, Geophys. Res. Lett., 17, 85–88.

    Article  ADS  Google Scholar 

  • Hood, L. L., J. Jirikowic, and J. McCormack (1993) Quasi-decadal variability of the stratosphere: Influence of long-term solar ultraviolet variations, J. Atmos. Sci., 50, 3941–3958.

    Article  ADS  Google Scholar 

  • Hood, L. L. and J. P. McCormack (1992) Components of interannual ozone change based on Nimbus 7 TOMS data, Geophys. Res. Lett., 19, 2309–2312.

    Article  ADS  Google Scholar 

  • Huang, T. and G. Brasseur (1993) Effect of long-term solar variability in a two-dimensional interactive model of the middle atmosphere, J. Geophys. Res., 98, 20413–20427.

    Article  ADS  Google Scholar 

  • Kelly, P. M., and T. M. L. Wigley (1992) Solar cycle length, greenhouse forcing and global climate, Nature, 360, 328–330.

    Article  ADS  Google Scholar 

  • Kodera, K. (1993) Influence of the stratospheric circulation change on the troposphere in the northern hemisphere winter, in The Role of the Stratosphere in Global Change, M.-L. Chanin, ed., 227–243, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Kodera, K. and K. Yamazaki (1990) Long-term variation of upper stratospheric circulation in the northern hemisphere in December, J. Meteor. Soc. Japan, 68, 101–105.

    Google Scholar 

  • Kodera, K., J. McCormack, and M. Giorgetta, Influences of the solar cycle on climate through stratospheric processes, paper presented at NATO-ASI, “The Stratosphere and its Role in the Climate System”, Val Morin, Canada, 4-15 September, 1995.

    Google Scholar 

  • Labitzke, K., and H. van Loon (1988) Associations between the 11-year solar cycle, the QBO, and the atmosphere, I, the troposphere and stratosphere in the Northern Hemisphere in winter, J. Atmos. Terr. Phys., 50, 197–206.

    Article  ADS  Google Scholar 

  • Labitzke, K., and H. van Loon (1995) Connection between the troposphere and stratosphere on a decadal scale, Tellus, 47A, 275–286.

    ADS  Google Scholar 

  • Labitzke, K., and H. van Loon (1996a), Total ozone and the 11-year sunspot cycle, J. Atmos. Terr. Phys., in press.

    Google Scholar 

  • Labitzke, K., and H. van Loon (1996b), The signal of the 11-year sunspot cycle in the regions around Japan, J. Meteor. Soc. Japan, in press.

    Google Scholar 

  • Lean, J., J. Beer, and R. Bradley (1995) Reconstruction of solar irradiance since 1610: Implications for climate change, Geophys. Res. Lett., 22, 3195–3198.

    Article  ADS  Google Scholar 

  • O’Brien, S. R., P. Mayewski, L. Meeker, D. Meese, M. Twickler, and S. Whitlow (1995) Complexity of Holocene climate as reconstructed from a Greenland ice core, Science, 270, 1962–1964.

    Article  ADS  Google Scholar 

  • Reid, G. (1991) Solar total irradiance variations and the global sea surface temperature record, J. Geophys. Res., 96, 2835–2844.

    Article  ADS  Google Scholar 

  • Rind, D., and N. K. Balachandran (1995) Modeling the effects of UV variability and the QBO on the troposphere / stratosphere system, Part II: The troposphere, J. Climate, 8, 2080–2095.

    Article  ADS  Google Scholar 

  • Salby, M. (1995) Evidence of solar cycle variability in the atmosphere: Its significance and relationship to terrestrial variability, in The Solar Cycle Variation of the Stratosphere: A STEP Working Group 5 Report, L. Hood, ed., University of Arizona, Tucson.

    Google Scholar 

  • Schlesinger, M. E. and N. Ramankutty (1992) Implications for global warming of intercycle solar irradiance variations, Nature, 360, 330–333.

    Article  ADS  Google Scholar 

  • van Loon, H., and K. Labitzke (1994) The 10-12 year atmospheric oscillation, Meteorolog. Zeitschr., N.F., 3, 259–266.

    Google Scholar 

  • Wang, H. J., D. M. Cunnold, and X. Bao (1996) A critical analysis of SAGE ozone trends, J. Geophys. Res., 101, 12495–12514.

    Article  ADS  Google Scholar 

  • Zerefos, C. W., K. Tourpali, B. R. Bojkov, D. S. Balis, B. Rognerund, and I. S. A. Isaksen (1996) Solar activity-total ozone relationships; observations and model studies with heterogeneous chemistry, J. Geophys. Res., in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Hood, L.L. (1998). Solar UV Radiation Induced Variations in the Lower Stratosphere and Upper Troposphere: A Review. In: Pap, J.M., Fröhlich, C., Ulrich, R.K. (eds) Solar Electromagnetic Radiation Study for Solar Cycle 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5000-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5000-2_41

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6099-8

  • Online ISBN: 978-94-011-5000-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics