Skip to main content

Maintenance of transposable element copy number in natural populations of Drosophila melanogaster and D. simulans

  • Chapter
Evolution and Impact of Transposable Elements

Abstract

To investigate the main forces controlling the containment of transposable elements (TE) in natural populations, we analyzed the copia, mdgl, and 412 elements in various populations of Drosophila melanogaster and D. simulans. a lower proportion of insertion sites on the X chromosome in comparison with the autosomes suggests that selection against the detrimental effects of TE insertions is the major force containing TE copies in populations of Drosophila. This selection effect hypothesis is strengthened by the absence of the negative correlation between recombination rate and TE copy number along the chromosomes, which was expected under the alternative ectopic exchange model (selection against the deleterious rearrangements promoted by recombination between TE insertions). a cline in 412 copy number in relation to latitude was observed among the natural populations of D. simulans, with very high numbers existing in some local populations (around 60 copies in a sample from Canberra, Australia). An apparent absence of selection effects in this Canberra sample and a value of transposition rate equal to 1–2 × 10-3 whatever the population and its copy number agree with the idea of recent but temporarily drastic TE movements in local populations. the high values of transposition rate in D. simulans clearly disfavor the hypothesis that the low amount of transposable elements in this species could result from a low transposition rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashburner, M., 1989. Drosophila. a Laboratory Handbook. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  • Aulard, S., F. Lemeunier, C. Hoogland, N. Chaminade, J.F. Brook-field & C. Biémont, 1995. Chromosomal distribution and population dynamics of the 412 retrotransposon in a natural population of Drosophila melanogaster. Chromosoma 103: 693–699.

    Article  PubMed  CAS  Google Scholar 

  • Biémont, G, 1992. Population genetics of transposable DNA elements. a Drosophila point of view. Genetica 86: 67–84.

    Article  PubMed  Google Scholar 

  • Biémont, C. & C. Gautier, 1988. Localisation polymorphism of mdg-1, copia, I and P mobile elements in genomes of Drosophila melanogaster, from data of inbred lines. Heredity 60: 335–346.

    Article  Google Scholar 

  • Biémont, C. & C. Gautier, 1989. Interactions between transposable elements for insertion in the Drosophila melanogaster genome. Heredity 63: 125–133.

    Article  PubMed  Google Scholar 

  • Biémont, C., F. Lemeunier, M. Garcia Guerreiro, J.F. Brookfield, C. Gautier, S. Aulard & E.G. Pasyukova, 1994a. Population dynamics of the copia, mdg1, mdg3, gypsy and P transposable elements in a natural population of Drosophila melanogaster. Genet. Res. 63: 197–212.

    Article  PubMed  Google Scholar 

  • Biémont, C., F. Lemeunier, C. Gautier, M. Garcia Guerreiro, S. Aulard & E.G. Pasyukova, 1994b. High rate of movement of one (mdg 3) out of four transposable elements in a natural population of Drosophila melanogaster. C. R. Acad. Sci. Paris 317: 213–216.

    PubMed  Google Scholar 

  • Busseau, I., M.C. Chaboissier, A. Pélisson & A. Bucheton, 1994. I factors in Drosophila melanogaster. transposition under control. Genetica 93: 101–116.

    Article  PubMed  CAS  Google Scholar 

  • Carmena, M. & C. Gonzalez, 1995. Transposable elements map in a conserved pattern of distribution extending from betaheterochromatin to centromeres in Drosophila melanogaster. Chromosoma 103: 676–684.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B., 1996. Background selection and patterns of genetic diversity in Drosophila melanogaster. Genet. Res. 68: 131–149.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B. & D. Charlesworth, 1983. The population dynamics of transposable elements. Genet. Res. 42: 1–27.

    Article  Google Scholar 

  • Charlesworth, B., P. Jarne & S. Assimacopoulos, 1994. The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. III. Element abundances in heterochromatin. Genet. Res. 64: 183–197.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B. & C.H. Langley, 1986. The evolution of self-regulate transposition of transposable elements. Genetics 112: 359–383.

    PubMed  CAS  Google Scholar 

  • Charlesworth, B. & C.H. Langley, 1989. The population genetics of Drosophila transposable elements. Ann. Rev. Genet. 23: 251–287.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B. & A. Lapid, 1989. A study of 10 transposable elements on X chromosomes from a population of Drosophila melanogaster. Genet. Res. 54: 113–125.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B., A. Lapid & D. Canada, 1992a. The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. I. Element frequencies and distribution. Genet. Res. 60: 103–114.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B., A. Lapid & D. Canada, 1992b. The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. II. Inferences on the nature of selection against elements. Genet. Res. 60: 115–130.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B., P. Sniegowski & W. Stephan, 1994. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371: 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Eanes, W.F., C. Wesley & B. Charlesworth, 1992. Accumulation of P elements in minority inversions in natural populations of Drosophila melanogaster. Genet. Res. 59: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Gvozdev, V.A., 1993. Variability of eukaryotic heterochromatin regions in the context of their probable biological role (exemplified with Drosophila melanogaster) (a review). Mol. Biol. 27: 745–752.

    Google Scholar 

  • Hoogland, C. & C. Biémont, 1996. Chromosomal distribution of transposable elements in Drosophila melanogaster: test of the ectopic recombination model for maintenance of insertion site number. Genetics 144: 197–204.

    PubMed  CAS  Google Scholar 

  • Irick, H., 1994. A new function for heterochromatin. Chromosoma 103: 1–3.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, N.L. & J.F. Brookfield, 1983. Transposable elements in Mendelian populations. III. Statistical results. Genetics 104: 485–495.

    PubMed  CAS  Google Scholar 

  • Kaplan, N.L., T. Darden & C.H. Langley, 1985. Evolution and extinction of transposable elements in Mendelian populations. Genetics 109: 459–480.

    PubMed  CAS  Google Scholar 

  • Karpen, G.H., M.H. Le & H. Le, 1996. Centric heterochromatin and the efficiency of achiasmate disjunction in Drosophila female meiosis. Science 273: 118–122.

    Article  PubMed  CAS  Google Scholar 

  • Keightley, P.D., 1994. The distribution of mutation effects on viability m Drosophila melanogaster. Genetics 138: 1315–1322.

    PubMed  CAS  Google Scholar 

  • Keightley, P.D., 1996. Nature of deleterious mutation load in Drosophila. Genetics 144: 1993–1999.

    PubMed  CAS  Google Scholar 

  • Kiiman, R.M. & J. Hey, 1993. Reduced natural selection associated with low recombination in Drosophila melanogaster. Mol. Biol. Evol. 10: 1239–1258.

    Google Scholar 

  • Korol, A.B. & K.G. Iliadi, 1994. Increased recombination frequencies resulting from directional selection for geotaxis in Drosophila. Heredity 72: 64–68.

    Article  PubMed  Google Scholar 

  • Langley, C.H., J.F. Brookfield & N. Kaplan, 1983. Transposable elements in Mendelian populations. I. a theory. Genetics 104: 457–472.

    PubMed  CAS  Google Scholar 

  • Langley, C.H., E.A. Montgomery, R. Hudson, N. Kaplan & B. Charlesworth, 1988. On the role of unequal exchange in the containment of transposable element copy number. Genet. Res. 52: 223–235.

    Article  PubMed  CAS  Google Scholar 

  • Le M-H., D. Duricka & G.H. Karpen, 1995. Islands of complex DNA are widespread in Drosophila centric heterochromatin. Genetics 141: 283–303.

    PubMed  CAS  Google Scholar 

  • Lozovskaya, E.R., D.L. Hartl & D.A. Petrov, 1995. Genomic regulation of transposable elements in Drosophila. Curr. Opin. Genet. Dev. 5: 768–773.

    Article  PubMed  CAS  Google Scholar 

  • Miklos, G.L.G., M.T. Yamamoto, J. Davies & V. Pirrotta, 1988. Microcloning reveals a high frequency of repetitive sequences characteristic of chromosome 4 and the ß-heterochromatin of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 85: 2051–2055.

    Article  PubMed  CAS  Google Scholar 

  • Montgomery, E.A., B. Charlesworth & C.H. Langley, 1987. A test for the role of natural selection in the stabilization of transposable element copy number in a population of Drosophila melanogaster. Genet. Res. 49: 31–41.

    Article  PubMed  CAS  Google Scholar 

  • Montgomery, E.A. & C.H. Langley, 1983. Transposable elements in Mendelian populations. II. Distribution of three copia-like elements in a natural population. Genetics 104: 473–483.

    PubMed  CAS  Google Scholar 

  • Mukai, T., S.I. Chigusa, L.E. Mettler & J.F. Crow, 1972. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics 72: 333–355.

    Google Scholar 

  • Nurminsky, D.I., Y.Y. Shevelyov, S.V. Nuzhdin & V.A. Gvozdev, 1994. Structure, molecular evolution and maintenance of copy number of extended repeated structures in the X-heterochromatin of Drosophila melanogaster. Mol. Gen. Genet. 103: 277–285.

    CAS  Google Scholar 

  • Nuzhdin, S.V., 1995. The distribution of transposable elements on X chromosomes from a natural population of Drosophila simulans. Genet. Res. 66: 159–166.

    Article  PubMed  CAS  Google Scholar 

  • Nuzhdin, S.V. & T.F.C. Mackay, 1994. Direct determination of retrotransposon transposition rates in Drosophila melanogaster. Genet. Res. 63: 139–144.

    Article  PubMed  CAS  Google Scholar 

  • Nuzhdin, S.V., E.G. Pasyukova & T.F.C. Mackay, 1996. Positive association between copia transposition rate and copy number in Drosophila melanogaster. Proc. R. Soc. Lond. B 263: 823–831.

    Article  CAS  Google Scholar 

  • Ohnishi, O., 1977. Spontaneous and ethyl methanesulfonate-induced mutations controlling viability in Drosophila melanogaster II. Homozygous effect of polygenic mutations. Genetics 87: 529–545.

    PubMed  CAS  Google Scholar 

  • Pardue, M.L., O.N. Danilevskaya, K. Lowenhaupt, F. Slot & K.L. Traverse, 1996. Drosophila telomeres: new views on chromosome evolution. Trends Genet. 12: 48–52.

    Article  PubMed  CAS  Google Scholar 

  • Pimpinelli, S., S. Bonaccorsi, M. Gatti & L. Sandier, 1986. The peculiar organisation of Drosophila heterochromatin. Trends Genet. 3: 17–20.

    Article  Google Scholar 

  • Pimpinelli, S., M. Berloco, L. Fanti, D. Dimitri, S. Bonaccorsi, E. Marchetti, R. Caizzi, C. Caggnese & M. Gatti, 1995. Transposable elements are stable structural components of Drosophila melanogaster heterochromatin. Proc. Natl. Acad. Sci. USA 92: 3804–3808.

    Article  PubMed  CAS  Google Scholar 

  • Sniegowski, P. & B. Charlesworth, 1994. Transposable element numbers in cosmopolitan inversions from a natural population of Drosophila melanogaster. Genetics 137: 815–827.

    PubMed  CAS  Google Scholar 

  • Stephan, W. & C.H. Langley, 1992. Evolutionary consequences of DNA mismatch inhibited repair opportunity. Genetics 132: 567–574.

    PubMed  CAS  Google Scholar 

  • Vieira, C. & C. Biémont, 1996a. Geographical variation in insertion site number of retrotransposon 412 in Drosophila simulans. J. Mol. Evol. 42: 443–451.

    Article  PubMed  CAS  Google Scholar 

  • Vieira, C. & C. Biémont, 1996b. Selection against transposable elements in D. simulans and D. melanogaster. Genet. Res. 68: 9–15.

    Article  PubMed  CAS  Google Scholar 

  • Vieira, C. & C. Biémont, 1997. 412 Transposition rate independent of copy number in natural populations of Drosophila simulans. Mol. Biol. Evol. 14: 185–188.

    Article  PubMed  CAS  Google Scholar 

  • Zuckerkandl, E. & W. Hennig, 1995. Tracking heterochromatin. Chromosoma 104: 75–83.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Pierre Capy

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Biémont, C. et al. (1997). Maintenance of transposable element copy number in natural populations of Drosophila melanogaster and D. simulans . In: Capy, P. (eds) Evolution and Impact of Transposable Elements. Contemporary Issues in Genetics and Evolution, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4898-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4898-6_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6054-7

  • Online ISBN: 978-94-011-4898-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics