Skip to main content

Quasispecies in retrotransposons: a role for sequence variability in Tnt1 evolution

  • Chapter
Evolution and Impact of Transposable Elements

Abstract

Retroviral replication is a very error-prone process. Replication of retroviruses gives rise to populations of closely related but different genomes referred to as ‘quasispecies’. This huge swarm of different sequences constitutes a reservoir of potentially useful genomes in case of an environmental change, endowing retroviruses with extreme adaptability. Retrotransposons are mobile genetic elements closely related to retroviruses, and retrotransposition is as error prone as retroviral replication. the Tntl retrotransposon is present in hundreds of copies in the genome of tobacco that show a high level of sequence heterogeneity. When Tntl is expressed, its RNA is not a single sequence but a population of sequences displaying a quasispecies-like structure. This population structure gives to Tntl, as in the case of retroviruses, a high sequence plasticity and an adaptive capacity. We propose this adaptivity as the major reason for Tntl maintenance in Nicotiana genomes and we discuss in this paper the importance of sequence variability for Tntl evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bennetzen, J.L., 1996. The contributions of retroelements to plant genome organization, function and evolution. Trends Microbiol. 4: 347–353.

    Article  PubMed  CAS  Google Scholar 

  • Boeke, J.D., 1989. Transposable elements in Saccharomyces cerevisiae, pp. 335–368 in Mobile DNA, edited by D.E. Berg & P.M.M. Howe. American Society for Microbiology, Washington.

    Google Scholar 

  • Calza, R., E. Huttner, M. Vincentz, P. Rouzé, F. Galangau, H. Vaucheret, I. Chérel, C. Meyer, J. Kronenberger & M. Caboche, 1987. Cloning of DNA fragments complementary to nitrate reduc-tase mRNA and encoding epitopes common to the nitrate reduc-tase from higher plants. Mol. Gen. Genet. 209: 552–562.

    Article  PubMed  CAS  Google Scholar 

  • Capel, J., L.M. Montero, J.M. Martinez-Zapater & J. Salinas, 1993. Non-random distribution of transposable elements in the nuclear genome of plants. Nucleic Acids Res. 21: 2369–2373.

    Article  PubMed  CAS  Google Scholar 

  • Casacuberta, J.M. & M.-A. Grandbastien, 1993. Characterisation of LTR sequences involved in the protoplast specific expression of the tobacco Tntl retrotransposon. Nucleic Acids Res. 21: 2087–2093.

    Article  PubMed  CAS  Google Scholar 

  • Casacuberta, J.M., S. Vernhettes & M.-A. Grandbastien, 1995. Sequence variability within the tobacco retrotransposon Tntl population. EMBO J. 14: 2670–2676.

    PubMed  CAS  Google Scholar 

  • Chalker, D.L. & S. Sandmeyer, 1992. Ty3 integrates within the region of RNA polymerase III transcription initiation. Genes Dev. 6: 117–128.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, D.K., E. Duarte, S.F. Elena, A. Moya, E. Domingo & J. Holland, 1994. The red queen reigns in the kingdom of RNA viruses. Proc. Natl. Acad. Sci. USA 91: 4821–4824.

    Article  PubMed  CAS  Google Scholar 

  • Csink, A.K. & J.F. McDonald, 1995. Analysis of Copia sequence variation within and between Drosophila species. Mol. Biol. Evol. 12: 83–93.

    Article  PubMed  CAS  Google Scholar 

  • Domingo, E. & J.J. Holland, 1994. Mutation rates and rapid evolution of RNA viruses, pp. 161–184 in The evolutionary biology of viruses, edited by S.S. Morse. Raven Press, Ltd., New York.

    Google Scholar 

  • Domingo, E., E. Martina-Salas, F. Sobrino, J.C. de la Torre, A. Portela, J. Ortin, C. Lopez-Galindez, P. Perez-Brena, N. Villanueva, R. Najera, S. VandePol, S. Steinhauer, N. DePolo & J.J. Holland, 1985. The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: biological relevance — a review. Gene 40: 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Duarte, E.A., I.S. Novella, S.C. Weaver, E. Domingo, S. Wain-Hobson, D.K. Clarke, A. Moya, S.F. Elena, J.C. de la Torre & J.J. Holland, 1994. RNA virus quasispecies: significance for viral disease and epidemiology. Infect. Agents Dis. 3: 201–214.

    PubMed  CAS  Google Scholar 

  • Eigen, M. & C.K. Biebricher, 1988. Sequence space and quasispecies distribution, pp. 211–245 in RNA Genetics, edited by E. Domingo, J.J. Holland & P. Ahlquist. CRC Press, Inc. Boca Raton, Florida.

    Google Scholar 

  • Eigen, M. & P. Shuster, 1979. The hypercycle-A principle of natural self-organization. Springer-Verlag. Heidelberg.

    Google Scholar 

  • Feuchter, A. & D. Mager, 1990. Functional heterogeneity of a large family of human LTR-like promoters and enhancers. Nucleic Acids Res. 18: 1261–1270.

    Article  PubMed  CAS  Google Scholar 

  • Gabriel A., M. Willems, E.H. Mules & J.D. Boeke, 1996. Replication infidelity during a single cycle of Tyl retrotransposition. Proc. Natl. Acad. Sci. USA 93: 7767–7771.

    Article  PubMed  CAS  Google Scholar 

  • Gause, G.F., 1971. The struggle for existence. Dover ed., New York.

    Google Scholar 

  • Gisquet P. & H. Hitier, 1961. La production de tabac: principes et méthodes. Baillière et fils eds., Paris.

    Google Scholar 

  • Goodspeed, T.H., 1954. The genus Nicottiana. Chronica Botanica Company. Waltham, Mass.

    Google Scholar 

  • Grandbastien, M.-A., A. Spielmann & M. Caboche, 1989. Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337: 376–380.

    Article  PubMed  CAS  Google Scholar 

  • Grandbastien, M.-A., C. Audeon, J.M. Casacuberta, P. Grappin, H. Lucas, C. Moreau & S. Pouteau, 1994. Functional analysis of the tobacco Tntl retrotransposon. Genetica 93: 181–189.

    Article  PubMed  CAS  Google Scholar 

  • Ji, H., D.P. Moore, M.A. Blomberg, L.T. Braiterman, D.F. Voytas, G. Natsoulis & J.D. Boeke, 1993. Hotspots for unselected Ty1 transposition events on yeast chromosome III are near tRNA genes and LTR sequences. Cell 73: 1007–1018.

    Article  PubMed  CAS  Google Scholar 

  • Levis, R.W., R. Ganesan, K. Houtchens, L. A. Tolar & F. Sheen, 1993. Transposons in place of telomeric repeats at a Drosophila telomere. Cell 75: 1083–1093.

    Article  PubMed  CAS  Google Scholar 

  • Mhiri, C., J.B. Morel, S. Vernhettes, J.M. Casacuberta, H. Lucas & M.-A. Grandbastien, 1997. Regulation of the tobacco Tntl retrotransposon in heterologous species following pathogen-related stress. Plant Mol. Biol. 33: 257–266.

    Article  PubMed  CAS  Google Scholar 

  • Moreau-Mhiri, C., J.B. Morel, C. Audéon, M. Ferault, M.-A. Grandbastien & H. Lucas, 1996. Regulation of the tobacco Tntl retrotransposon in heterologous species following pathogen-related stress. Plant J. 9: 409–419.

    Article  CAS  Google Scholar 

  • Pardue, M.L., O.N. Danilevskaya, K. Lowenhaupt, F. Slot & K.L. Traverse, 1996. Drosophila telomeres: new views on chromosome evolution. Trends Genet. 12: 48–52.

    Article  PubMed  CAS  Google Scholar 

  • Pathak, V.K. & H.M. Temin, 1990. Broad spectrum of in vivo forward mutations and mutational hotspots in a retroviral shuttle vector after single replication cycle: deletions and deletions with insertions. Proc. natl. Acad. Sci USA 87: 6024–6028.

    Article  PubMed  CAS  Google Scholar 

  • Pouteau, S., M.-A. Grandbastien & M. Boccara, 1994. Microbial elicitors of plant defence responses activate transcription of a retrotransposon. Plant J. 5: 535–542.

    Article  CAS  Google Scholar 

  • Pouteau, S., E. Hutner, M.-A. Grandbastein & M. Caboche, 1991. Specific expression of the Tntl retrotransposon in protoplasts. EMBOJ. 10: 1911–1918.

    CAS  Google Scholar 

  • Vernhettes, S., M.-A. Grandbastien & J.M. Casacuberta, 1997. In vivo characterisation of transcriptional regulatory sequences involved in the defence-associated expression of the tabacco retrotransposon Tntl. Plant. Mol. Biol. In Press.

    Google Scholar 

  • Wain-Hobson, S., 1993. The fastest genome evolution ever described: HIV variation in situ. Curr. Opin. Genet. Devel. 3: 878–883.

    Article  CAS  Google Scholar 

  • Wessler, S.R., T.E. Bureau & S.E. White, 1995. LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr. Opin. Genet. Dev. 5: 814–821.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Pierre Capy

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Casacuberta, J.M., Vernhettes, S., Audeon, C., Grandbastien, MA. (1997). Quasispecies in retrotransposons: a role for sequence variability in Tnt1 evolution. In: Capy, P. (eds) Evolution and Impact of Transposable Elements. Contemporary Issues in Genetics and Evolution, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4898-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4898-6_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6054-7

  • Online ISBN: 978-94-011-4898-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics