Skip to main content

Part of the book series: NATO Science Series ((NSSE,volume 364))

Abstract

Historically, the development of the transmission electron microscope has followed the path of continually increasing the degree of coherence of the imaging process. This is despite the fact that coherent high resolution images suffer from the phase problem which means they cannot be directly inverted to give the object. Interpretation must necessarily rely on simulation of images of trial objects. Even with the prospect of spherical aberration correction, coherent images will still take many forms depending on objective lens defocus and specimen thickness, and the inversion problem will remain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ade, G. (1977) On the incoherent imaging in the scanning transmission electron microsocpe, Optik 49, 113–116.

    Google Scholar 

  • Allen, L. J. (1993) Electron energy loss spectroscopy in a crystalline environment using inner-shell ionization, Ultramicroscopy 48, 97–106.

    Article  Google Scholar 

  • Anderson, S. C, Birkeland, C. R., Anstis, G. R., and Cockayne, D. J. H. (1997) An approach to quantitative compositional profiling at near atomic resolution using high-angle annular dark-field imaging, Ultramicroscopy 69, 83–103.

    Article  CAS  Google Scholar 

  • Batson, P. E. (1993) Simultaneous STEM imaging and electron energy-loss spectroscopy with atomic column sensitivity, Nature 366, 727–728.

    Article  CAS  Google Scholar 

  • Browning, N. D., Chisholm, M. F., and Pennycook, S. J. (1993) Atomic-resolution chemical analysis using a scanning transmission electron microscope, Nature 366, 143–146.

    Article  CAS  Google Scholar 

  • Browning, N. D., Chisholm, M. F., Nellist, P. D., Pennycook, S. J., Norton, D. P., and Lowndes, D. H. (1993) Correlation between hole depletion and atomic structure at high-angle grain boundaries in YBa2Cu307.δ, Physica C 212, 185–190.

    Article  CAS  Google Scholar 

  • Browning, N. D. and Pennycook, S. J. (1995) Atomic-resolution electron energy loss spectroscopy in the scanning transmission electron microscope, J. Microsc. 180, 230–237.

    Article  CAS  Google Scholar 

  • Browning, N. D., Buban, J. P., Nellist, P. D., Norton, D. P., Chisholm, M. F., and Pennycook, S. J. (1998) The atomic origins of reduced critical currents at [001] tilt grain boundaries in YBa2Cu307.δ thin films, Physica C 294:183–193.

    Article  CAS  Google Scholar 

  • Cannard, P. J. and Tilley, R. J. D. (1988) New intergrowth phases in the ZnO-In2O3 system, J. Solid State Chem. 73, 418–426.

    Article  CAS  Google Scholar 

  • Chen, J., Chan, H. M, and Harmer, M. P. (1989) Ordering structure and dielectric properties of undoped and La/Na-doped Pb(Mg1/3Nb2/3)O3, J. Am. Ceram. Soc. 72, 593–598.

    Article  CAS  Google Scholar 

  • Chisholm, M. F., Maiti, A., Pennycook, S. J., and Pantelides, S. T. (1998) Atomic configurations and energetics of arsenic impurities in a silicon grain boundary, Phys. Rev. Lett. 81, 132–135.

    Article  CAS  Google Scholar 

  • Cowley, J. M. (1969) Image contrast in a transmission scanning electron microscope, Appl. Phys. Lett. 15, 58–59.

    Article  Google Scholar 

  • Cowley, J. M. (1986) Principles of image formation in J. J. Hren, J. I. Goldstein, and D. C. Joy (eds.), Principles of Analytical Electron Microscopy, Plenum Press, New York, New York, pp. 343–368.

    Google Scholar 

  • Cowley, J. M. (1976) Scanning transmission electron microscopy of thin specimens, Ultramicroscopy 2, 3–16.

    Article  CAS  Google Scholar 

  • Crewe, A. V., Wall, J., and Langmore, J. (1970) Visibility of single atoms, Science 168, 1338–1340.

    Article  CAS  Google Scholar 

  • Crewe, A. V. and Salzman, D. B. (1982) On the optimum resolution for a corrected STEM, Ultramicroscopy 9, 373–378.

    Article  Google Scholar 

  • Datye, A. K. and Smith, D. J. (1992) The study of heterogeneous catalysts by high-resolution transmission electron microscopy, Catal. Rev.-Sci. Eng. 34, 129–178.

    Article  CAS  Google Scholar 

  • Dellby, N., Krivanek, O. L. and Lupini, A. R. (1998) Aberration correction in the STEM, Ultramicroscopy, (in press).

    Google Scholar 

  • Dickey, E. C, Dravid, V. P., Nellist, P. D., Wallis, D. J., and Pennycook, S. J. (1998) Three-dimensional atomic structure of NiO-ZrO2(cubic) interfaces, Acta Mater. 46, 1801–1816.

    Article  CAS  Google Scholar 

  • Duscher, G., Browning, N. D., and Pennycook, S. J. (1998) Atom column resolved electron energy loss spectroscopy, Phys. Stat. Sol. (a) 166, 327–342.

    Article  CAS  Google Scholar 

  • Duscher, G., Pennycook, S. J., Browning, N. D., Rupangudi, R., Takoudis, C., Gao, H-J., and Singh, R. (1998) Structure, composition and strain profiling of Si/SiO2 interfaces, Proceedings of International Conference on Characterization and Metrology for ULSI Technology, Gaithersburg, Maryland, March 23-27, pp 191–195.

    Chapter  Google Scholar 

  • Engel, A., Wiggins, J. W., and Woodruff, D. C. (1974) A comparison of calculated images generated by six modes of transmission electron microscopy, J. Appl. Phys. 45, 2739–2747.

    Article  CAS  Google Scholar 

  • Grigorian, I., Williams, K. A., Fang, S., Sumanasekera, G. U., Loper, A. L., Dickey, E. C., Pennycook, S. J. and Ecklund, P. C. (1998) Reversible intercalation of charged iodine chains into carbon nanotube ropes, Phys. Rev. Letts 80, 5560–5563.

    Article  CAS  Google Scholar 

  • Gull, S. F. and Skilling, J. (1984) Maximum entropy methods in image processing, IEE Proc. 131F, 646–659.

    Google Scholar 

  • Hall, C. R. and Hirsch, P. B. (1965) Effect of thermal diffuse scattering on propagation of high energy electrons through crystals, Proc. Roy. Soc. A 286, 158–177.

    Google Scholar 

  • Hall, C. R., Hirsch, P. B., and Booker, G. R. (1966) Effects of point defects on absorption of high energy electrons passing through crystals, Phil. Mag. 14, 979–989.

    Article  CAS  Google Scholar 

  • Harris, D. J., Watson, G. W., and Parker, S. C. (1996) Atomistic simulation of the effect of temperature and pressure on the [001] symmetric tilt grain boundaries of MgO, Phil. Mag. A74, 407–418.

    Google Scholar 

  • Hartel, P., Rose, H., and Dinges, C. (1996) Conditions and reasons for incoherent imaging in STEM, Ultramicroscopy 63, 93–114.

    Article  CAS  Google Scholar 

  • Hawkes, P.W. (1997) Aberrations, in J. Orloff, (ed.), Handbook of Charged Particles Optics, CRC Press, Boca Raton and New York.

    Google Scholar 

  • Holbrook, O. F. and Bird, D. M. (1995) Theoretical modelling of the size and shape of atomic images formed with inelastically scattered electrons, Proceedings of Microscopy and Analysis 1995, Jones and Begall, New York, pp. 278–279.

    Google Scholar 

  • Howie, A. (1979) Image contrast and localized signal selection techniques, J. Microsc. 117, 11–23.

    Article  Google Scholar 

  • Kingery, W. D. (1974) Plausible concepts necessary and sufficient for interpretation of ceramic grain-boundary phenomena: I, grain-boundary characteristics, structure, and electrostatic potential, J. Am. Cer. Soc, 57, 1–8.

    Article  CAS  Google Scholar 

  • Isaacson, M. S., Ohtusuki, M., and Utlaut, M. (1979) Electron microscopy of individual atoms, in J. J. Hren, J. I. Goldstein, and D. C. Joy (eds.), Introduction to Analytical Electron Microscopy, Plenum Press, New York, New York, pp. 343–368.

    Google Scholar 

  • Jesson, D. E. and Pennycook, S. J. (1993) Incoherent imaging of thin specimens using coherently scattered electrons, Proc. Roy. Soc. (London) A 441, 261–281.

    Article  Google Scholar 

  • Jesson, D. E. and Pennycook, S. J. (1995) Incoherent imaging of crystals using thermally scattered electrons, Proc. Roy. Soc. (London) A 449, 273–293.

    Article  CAS  Google Scholar 

  • Loane, R. F., Kirkland, E. J., and Silcox, J. (1988) Visibility of single heavy atoms on thin crystalline silicon in simulated annular dark-field STEM images, Acta. Cryst. A44, 912–927.

    CAS  Google Scholar 

  • Loane, R. F., Xu, P., and Silcox, J. (1992) Incoherent imaging of zone axis crystals with ADF STEM, Ultramicroscopy 40, 121–138.

    Article  Google Scholar 

  • Maiti, A., Chisholm, M. F., Pennycook, S. J., and Pantelides, S. T. (1996) Dopant segregation at semiconductor grain boundaries through cooperative chemical rebonding. Phys. Rev. Lett. 77, 1306–1309.

    Article  CAS  Google Scholar 

  • Maslen, V. W. and Rossouw, C. J. (1984) Implications of (e, 2e) scattering for inelastic electron diffraction in crystals: I. theoretical, Phil. Mag. A 49, 735–742.

    Article  CAS  Google Scholar 

  • McGibbon, A. J., Pennycook, S. J., and Jesson, D.E. (1998) Crystal structure retrieval by maximum entropy analysis of atomic resolution incoherent images, J. Microsc. (in press).

    Google Scholar 

  • McGibbon, M. M, Browning, N. D., Chisholm, M. F., Mc Gibbon, A. J., Pennycook, S. J., Ravikumar, and Dravid, V. P. (1994) Direct determination of grain boundary atomic structure in SrTi03, Science 266, 102–104.

    Article  CAS  Google Scholar 

  • Nakamura, K., Kakibayashi, H., Kanehori, K., and Tanaka, N., (1997) Position dependence of the visibility of a single gold atom in HAADF-STEM image simulation, J. Electron Microsc. 1, 33–43.

    Google Scholar 

  • Nellist, P. D. and Pennycook, S. J. (1996) Direct imaging of the atomic configuration of ultra-dispersed catalysts, Science 274, 413–415.

    Article  CAS  Google Scholar 

  • Nellist, P. D. and Pennycook, S. J. (1998a) Incoherent imaging using dynamically scattered coherent electrons, Ultramicroscopy, (in press).

    Google Scholar 

  • Nellist, P. D. and Pennycook, S. J. (1998b) Accurate structure determination from image reconstruction in ADF STEM, J. Microscopy 190, 159–170.

    Article  CAS  Google Scholar 

  • Nellist, P. D. and Pennycook, S. J. (1998c) Sub-Ã¥ngstrom resolution TEM through under-focussed incoherent imaging, Phys. Rev. Lett, (in press).

    Google Scholar 

  • Pennycook, S. J. and Boatner, L. A. (1988) Chemically sensitive structure imaging with a scanning transmission electron microscope, Nature 336, 565–567.

    Article  CAS  Google Scholar 

  • Pennycook, S. J. and Jesson, D. E. (1990) High-resolution incoherent imaging of crystals, Phys. Rev. Lett. 64, 938–941.

    Article  CAS  Google Scholar 

  • Pennycook, S. J. and Jesson, D. E. (1991) High-resolution Z-contrast imaging of crystals. Ultramicroscopy 37, 14–38.

    Article  Google Scholar 

  • Pennycook, S. J. and Jesson, D. E. (1992) Atomic resolution Z-contrast imaging of interfaces, Acta Metall. Mater. 40, S149–S159.

    Article  CAS  Google Scholar 

  • Pennycook, S. J., Jesson, D. E., and Nellist, P. D. (1996) High angle dark field STEM for advanced materials, J. Electron Microsc. 45, 36–43.

    Article  CAS  Google Scholar 

  • Pennycook, S. J., Jesson, D. E., Nellist, P. D., Chisholm, M. F., and Browning, N. D. (1997) Scanning transmission electron microscopy: Z-contrast, in S. Amelinckx, D. van Dyck, J. van Landuyt, and G. van Tendeloo (eds), Handbook of Microscopy, VCH Publishers, Weinheim, Germany, pp. 595–620.

    Google Scholar 

  • Perovic, D. D., Rossouw, C. J. and Howie, A., (1993) Imaging inelastic strains in high-angle annular dark field scanning transmission electron microscopy, Ultramicroscopy 52, 353–359.

    Article  CAS  Google Scholar 

  • Perovic, D. D., Howie, A., and Rossouw, C. J. (1993) On the image contrast from dislocations in high-angle annular dark-field scanning transmission electron microscopy, Phil. Mag. Lett. 67, 261–277.

    Article  Google Scholar 

  • Rafferty, B. and Pennycook, S. J. (1998) Towards atomic column-by-column spectroscopy, Ultramicroscopy (in press).

    Google Scholar 

  • Rayleigh, Lord (1896) On the theory of optical images with special reference to the microscope, Phil Mag. (5)42, 167–195.

    Google Scholar 

  • Ritchie, R. H. and Howie, A. (1988) Inelastic scattering probabilities in scanning transmission electron microscopy, Phil Mag. A 58, 753–767.

    Article  Google Scholar 

  • Rose, H. (1976) Image formation by inelastically scattered electrons in electron microscopy, Optik 45, 139–158 and 187-208.

    Google Scholar 

  • Rossouw. C. J. and Maslen, V. W. (1984) Implications of (e, 2e) scattering for inelastic electron diffraction in crystals II, application of the theory, Phil Mag. A 49, 743–757.

    Article  CAS  Google Scholar 

  • Scherzer, O. (1949) The theoretical resolution limit of the electron microscope, J. Appl Phys. 20, 20–29.

    Article  CAS  Google Scholar 

  • Spence, J. C. H. and Cowley, J. M. (1978) Lattice imaging in STEM, Optik 50, 129–142.

    CAS  Google Scholar 

  • Tanaka, N. et al., (1997) High-resolution observation of Si100.xVx amorphous alloys by HAADF-STEM, Microscopy and Microanalysis 3, Suppl. 2 (Proc. Microsc. And Microan. ′97, Springer, New York, 1997), pp 719–720.

    Google Scholar 

  • Treacy M. M. J., Howie, A. and Wilson, C. J. (1978) Z-contrast of Platinum and Palladium Catalysts, Phil. Mag. 38, 569–585.

    Article  CAS  Google Scholar 

  • Treacy, M. M. J., Howie, A. and Pennycook, S. J. (1980) Z-contrast of supported catalyst particles on the STEM, in Electron Microscopy and Analysis, 1979, T. Mulvey (ed.), (Inst. Phys. Conf. Ser. No. 52, Institute of Physics, London and Bristol) pp. 261–264.

    Google Scholar 

  • Warren, B. E. (1990) X-Ray Diffraction, Dover, New York.

    Google Scholar 

  • Xin, Y., Pennycook, S. J., Browning, N. D., Nellist, P. D., Sivananthan, S., Omnès, F., Beaumont, B., Faurie, J.-P. and Gibart P. (1998) Direct observation of the core structures of threading dislocations in GaN, Appl Phys. Lett. 72, 2680–2682.

    Article  CAS  Google Scholar 

  • Yan, Y., Chisholm, M. F., Duscher, G., Maiti, A., Pennycook, S. J., and Pantelides, S. T. (1998) Impurity induced structural transformation of a MgO grain boundary, Phys. Rev. Lett. 81, 3675–3678.

    Article  CAS  Google Scholar 

  • Yan, Y., Pennycook, S. J., Xu, Z., and Viehland, D. (1998) Determination of the ordered structures of Pb(Mg1/3Nb2/3)O3 and Ba(Mg1/3Nb2/3)O3 by atomic-resolution Z-contrast imaging Appl Phys. Lett 72, 3145–31

    Article  CAS  Google Scholar 

  • Yan, Y., Pennycook, S. J., Dai, J., Chang, R. P. H., Wang, A., and Marks, T. J. (1998) Polytypoid structures in annealed In2O3-ZnO Films, Appl. Phys. Lett. 2585–2587.

    Google Scholar 

  • Yan, Y., Pennycook, S. J. and Tsai, A. P. (1998) Direct imaging of local chemical disorder and columnar vacancies in ideal decagonal Al-Ni-Co quasicrystals, Phys. Rev. Lett, (in press).

    Google Scholar 

  • Zeitler, E. and Thomson, M. G. R. (1970) Scanning transmission electron microscopy. Optik 31, 258–280 and 359-366.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pennycook, S.J., Nellist, P.D. (1999). Z-Contrast Scanning Transmission Electron Microscopy. In: Rickerby, D.G., Valdrè, G., Valdrè, U. (eds) Impact of Electron and Scanning Probe Microscopy on Materials Research. NATO Science Series, vol 364. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4451-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4451-3_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5940-1

  • Online ISBN: 978-94-011-4451-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics