Skip to main content

Part of the book series: NATO Science Series ((NSSE,volume 364))

Abstract

In the Environmental Scanning Electron Microscope (ESEM) there is a gas in the chamber above the sample. This is the crucial difference between it and conventional scanning electron microscopy (CSEM), which permits a wide range of samples to be investigated of a type inaccessible to CSEM. When the gas is water vapour, then damp/wet samples (or even essentially pure water) can be investigated without the need for careful prior specimen preparation to remove all the liquid. This obviously has the advantage that reduction in specimen preparation means a reduction in the liklihood of artefacts being introduced. However, the presence of the gas leads to a variety of new effects due to the interaction of the electrons with the gas molecules. Some of these effects are desirable and, as we will see below, can be usefully harnessed to provide novel sources of contrast. However, other consequences are less desirable, leading to both a reduction in spatial resolution and signal/noise ratio. Hence, in order to optimise use of the ESEM, it is important to have a clear understanding of the nature of the potential gas molecule/electron interactions, and their impact on image formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kitching, S., Bache, I. C. and Donald, A. M. (1998) The effect of probe beam scattering on X-ray spatial resolution in the ESEM, Scanning submitted

    Google Scholar 

  2. Thiel, B. L., Hussein-Ismail, M. R. and Donald, A. M. (1997) Effects of space charge on ESEM gas amplification., Microscopy and Microanalyis 3 supp 2, 609–610.

    Google Scholar 

  3. von Engel, A. (1965) Ionised Gases, 2nd edition, Clarendon Press, Oxford

    Google Scholar 

  4. Fletcher, A. L., Thiel, B. L. and Donald, A. M. (1997) Amplification measurements of alternative imaging gases in ESEM, J Phys D 30, 2249–2257.

    Article  CAS  Google Scholar 

  5. Moncrieff, D. A., Robinson, V. N. E. and Harris, L. B. (1978) Charge neutralisation of insulating surfaces in the SEM by gas ionisation, J Phys D Appl Phys 11, 2315–2325.

    Article  CAS  Google Scholar 

  6. Farley, A. N. and Shah, J. S. (1990) Primary considerations for image enhancement in high-pressure scanning electron microscopy. 1. Electron beam scattering and contrast, J. of Micros. 158, 379–388.

    Article  Google Scholar 

  7. Farley, A. N. and Shah, J. S. (1990) Primary considerations for image enhancement in high-pressure scanning electron microscopy. 2. Image Contrast, J. of Micros. 158, 389–401.

    Article  Google Scholar 

  8. Durkin, R. and Shah, J. S. (1993) Amplification and noise in high-pressure scanning electron microscopy, J Micros 169, 33–51.

    Article  CAS  Google Scholar 

  9. Thiel, B., Bache, I. C, Fletcher, A. L., Meredith, P. and Donald, A. M. (1997) An improved model for gaseous amplification in the ESEM, J Micros 187, 143–157.

    Article  CAS  Google Scholar 

  10. Danilatos, G.D.(1988) Foundations of environmental scanning electron microscopy, Adv Electronics Electron Phys 71, 109–250.

    Google Scholar 

  11. Forsberg, P. and Lepoutre, P. (1994) ESEM examination of paper in high moisture environment: surface structural changes and electron beam damage, Scanning Microscopy 8, 31–34.

    CAS  Google Scholar 

  12. Wight, S., Gillen, G. and Herne, T. (1997) Development of environmental scanning electron microscopy electron beam profile imaging with self-assembled monolayers and secondary ion mass spectroscopy, Scanning 19, 71–74.

    Article  CAS  Google Scholar 

  13. Jenkins, L. and Donald, A. M. (1997) Use of the ESEM for the observation of the selling behaviour of cellulosic fibres, Scanning 19, 92–97.

    Article  CAS  Google Scholar 

  14. Kitching, S. and Donald, A. M. (1998) Beam damage of polypropylene in the environmental scanning electron microscope: an FTIR study, J Micros, in press.

    Google Scholar 

  15. Howie, A. (1995) Recent developments in secondary electron imaging., J. Microscopy 180, 192–203.

    Article  CAS  Google Scholar 

  16. Lange, P., Saas, J. K. and Unwin, R. (1981) Improved analysis of the power law in photoemission yield spectroscopy J Electroanal Chem 122, 387–3

    Article  CAS  Google Scholar 

  17. Goulet, T., bernas, A., Ferradini, C. and Jay-Gerin, J.-P. (1990) On the electronic-structure of liquid water-conduction-band tail revealed by photoionization data, Chem Phys Lett 170, 492–496.

    Article  CAS  Google Scholar 

  18. Williams, F., Varma, S. P. and Hillenius, S. (1974) J Chem Phys170, 1549–155

    Google Scholar 

  19. Ashok, J. and Varaprasad, L. H. (1991) Handbook of Optical Constants of Solids, ed Palik, E.D., Academic Press.

    Google Scholar 

  20. Birkhoff, R. D., Painter, L. R. and Heller, J. M. J. (1978) J Chem Phys69, 418

    Article  CAS  Google Scholar 

  21. Stokes, D. J., Thiel, B. L. and Donald, A. M. (1998) Direct observation of water-oil emulsion systems in the liquid stated by environmental SEM, Langmuir submitted.

    Google Scholar 

  22. Farley, A. N. and Shah, J. (1991) High pressure scanning electron microsopy of insulating materials: a new approach, J Micros 164, 107–125

    Article  CAS  Google Scholar 

  23. Bolon, R. B., Robertson, C. D. and Lifshin, E. (1989) The environmental SEM: a new way to look at insulators, Microbeam Analysis, 449–452.

    Google Scholar 

  24. D’Emanuele, A. and Gilpin, C. (1996) Applications of the environmental scanning electron microscope to the analysis of pharmaceutical formulations, Scanning 18, 522–527.

    Article  Google Scholar 

  25. Newbury, D. E. (1996) Imaging deep holes in structures with gaseous secondary-electron detection in the environmental scanning electron microscope, Scanning 18, 474–482.

    Article  CAS  Google Scholar 

  26. Devin, J. E., Attawia, M. A. and Laurencin, C. T. (1996) 3-dimensional degradable porous polymer-ceramic matrices for use in bone repair, J Biomaterials Sci-Poly Ed 7, 661–669.

    Article  CAS  Google Scholar 

  27. Enea, O., Zaytouni, B. and Moser, J. (1998) Morphological and photoelectrochemical properties of porous, superimposed Au/TiO2 layers, J Appl Electrochem 28, 36–40.

    Article  CAS  Google Scholar 

  28. Uwins, P. J. R., Murray, M. and Gould, R. J. (1993) Effects of four different processing techniques on the microstructure of potatoes: comparison with fresh samples in the ESEM, Microscopy Research and Technique 25, 412–418.

    Article  CAS  Google Scholar 

  29. Kirk, T. B., Wilson, A. S. and Stachowiak, G. W. (1993) The effects of dehydration on the surface morphology of articular cartilage, J Orthopadic Rheum 6, 75–80.

    Google Scholar 

  30. Kodaka, T., Debari, K., Sato, T. and Tada, T. (1991) ESEM observation of human dentin, J Elect Micros 40,267.

    Google Scholar 

  31. Collins, S. P., Pope, R. K., Scheetz, R. W., Ray, R. I., Wagner, P. A. and Little, B. J. (1993) Advantages of ESEM in studies of microorganisms, Micros Res Tech 25, 398–405.

    Article  CAS  Google Scholar 

  32. Little, B., Wagner, P., Ray, R., Pope, R. and Scheetz, R. (1991) Biofilms: an ESEM evaluation of artifacts introduced during SEM preparation, Journal of Industrial Microbiology 8, 213–222.

    Article  CAS  Google Scholar 

  33. Eckersley, S. T. and Rudin, A. (1994) Drying behaviour of acrylic latexes, Progress in Organic Coatings 23, 387–402.

    Article  CAS  Google Scholar 

  34. Cameron, R. E. and Donald, A. M. (1994) Minimising sample evaporation in the ESEM, J Micros 173, 227–237.

    Article  Google Scholar 

  35. Mehta, S., Jones, R. and Caveny, B. (1994) Cryogenics with cement microscopy redefines cement behaviour, Oil Gas J Oct 94, 47–53.

    Google Scholar 

  36. Jennings, H. M. and Sujata, K. (1992) New experimental techniques for characterizing cement-based materials, Mat. Res. Soc. Symp. Proc. 245

    Google Scholar 

  37. Uchikawa, H., Sawaki, D. and Hanehara, S. (1995) Influence of kind and added timing of organic admixture on the composition, structure and property of fresh cement paste, Cement and Concrete Research 25, 353–364.

    Article  CAS  Google Scholar 

  38. Kjellsen, K. O. and Jennings, H. M. (1996) Observations of microcracking in cement paste upon drying and rewetting by environmental scanning electron microscopy, Advn. Cent. Bas. Mat. 3, 14–19.

    CAS  Google Scholar 

  39. Lange, D. A., Sujata, K. and Jennings, H. M. (1991) Observations of wet cement using electron microscopy, Ultramicroscopy 37, 234–238.

    Article  CAS  Google Scholar 

  40. Su, Z., Sujata, K., Bijen, J. M. J. M., Jennings, H. M. and Fraaij, A. L. A. (1996) The evolution of the microstructure in styrene acrylate polymer-modified cement pastes at the early stage of cement hydration., Adv Cem Bas Mat 3, 87–93.

    Article  CAS  Google Scholar 

  41. Hall, C, Hoff, W. D., Taylor, S. C, Wilson, M. A., Yoon, B.-G., Reinhardt, H. W., Sororo, M., Meredith, P. and Donald, A. M. (1995) Water anomaly in capillary liquid absorption by cement-based materials, J. Materials Science Letters 14, 1178–1181.

    Article  CAS  Google Scholar 

  42. Meredith, P., Donald, A. M. and Luke, K. (1995) Pre-induction and induction hydration of tricalcium silicate: an environmental scanning electron microscopy study., J Mat Sci. 39, 1921–1930.

    Article  Google Scholar 

  43. Shah, J. and Durkin, R. (1991) Monte carlo simulation of back scattered electron trajectories from wet organic surfaces, IOP Conference Series 119, 161–164.

    CAS  Google Scholar 

  44. Parra, R. E. d. l. (1993) A method to detect variations in the wetting properties of microporous polymer membranes, Microscopy Res. & Techn. 25, 362–373.

    Article  Google Scholar 

  45. Liukkonen, A. (1997) Contact angle of water on paper comonents: sessile drops versus ESEM measurements, Scanning 19, 411–415.

    Article  CAS  Google Scholar 

  46. Doehne, E. and Stulik, D. C. (1990) Applications of the environmental scanning electron microscope to conservation science, Scanning Microscopy 4, 275–286.

    Google Scholar 

  47. Lavoie, D. M., Little, B. J., Ray, R. I., Bennett, R. H., Lambert, M. W., Asper, V. and Baerwald, R. J. (1995) Environmental scanning electron microscopy of marine aggregates, Journal of Microscopy 178, 101–106.

    Article  Google Scholar 

  48. Meredith, P., Donald, A. M. and Payne, R. S. (1996) Freeze drying: in situ observations using cryoESEM and DSC, J Pharm Sci 85, 631–637.

    Article  CAS  Google Scholar 

  49. Uwins, P. J. R. (1994) Environmental scanning electron microscopy, Materials Forum 18, 51–75.

    CAS  Google Scholar 

  50. He, C. and Donald, A. M. (1996) Morphology of core-shell polymer latices during drying., Langmuir 12, 6250–6256.

    Article  CAS  Google Scholar 

  51. Sheehan, J. G. and Scriven, L. E. (1991) Assessment of environmental scanning electron microscopy for coating research, 337–383.

    Google Scholar 

  52. Meredith, P. and Donald, A. M. (1996) Study of ‘wet’ polymer latex systems in environmental scanning electron microscopy: some imaging considerations., J Micros 181, 23–35.

    Article  CAS  Google Scholar 

  53. Keddie, J., Meredith, P., Jones, R.A.L. and Donald, A.M. (1996) Rate-limiting steps in the film formation of water-borne acrylic latices as elucidated with ellipsometry and environmental-SEM. ACS Monograph Series 648, 332–3

    Article  CAS  Google Scholar 

  54. Keddie, J., Meredith, P., Jones, R.A.L. and Donald, A.M. (1996) Film formation of acrylic latices with varying concentrations of non-film forming particles., Langmuir 12, 3793–3801.

    Article  CAS  Google Scholar 

  55. Kalnas, C. E., Mansfield, J. F., Was, G. S. and Jones, J. W. (1994) In situ bend fixture for deformation and fracture studies in the environmental scanning electron microscope, J. Vac. Sci. Techno. A 12(3), 883–885.

    Article  Google Scholar 

  56. He, C., Butler, M. F. and Donald, A. M. (1998) In situ deformation of rubber toughened PMMA: influence of rubber particle concentration and cross linking density, Macromols 31, 158–164.

    Article  CAS  Google Scholar 

  57. Thiel, B. L. and Donald, A. M. (1998) In situ mechanical testing of fully hydrated carrots (Daucus carota) in the ESEM, Annals of Botany submitted.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Donald, A.M., Thiel, B.L. (1999). ESEM Image Contrast and Applications to Wet Organic Materials. In: Rickerby, D.G., Valdrè, G., Valdrè, U. (eds) Impact of Electron and Scanning Probe Microscopy on Materials Research. NATO Science Series, vol 364. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4451-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4451-3_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5940-1

  • Online ISBN: 978-94-011-4451-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics