Skip to main content

The Darkest Regions Of Solar Polar Coronal Holes Observed By Sumer On Soho

  • Conference paper
Plasma Astrophysics And Space Physics
  • 357 Accesses

Abstract

The plasma conditions above solar coronal holes are of considerable interest, because it is well established that the high-speed solar wind streams originate in these regions (see, e.g., Krieger et al., 1973; Geiss et al., 1995a; Woch et al., 1997), and the acceleration processes of the fast solar wind thus can be studied there. The most prominent features above polar coronal holes are polar plumes or rays (van de Hülst, 1950a,b; Saito, 1965; Newkirk and Harvey, 1968; Ahmad and Withbroe, 1977; Antonucci et al., 1997; Wang et al., 1997; DeForest et al., 1997; Wilhelm et al., 1998a). The debate whether plumes contribute to the fast solar wind streams is not yet settled. Of crucial importance is the elemental abundance inside and outside plumes. Widing and Feldman (1989, 1992, 1993) deduced a very low neon-to-magnesium ratio relative to the photosphere in a bright plume. As, on the other hand, abundances measured in fast solar wind streams by in situ observations are close to those of the photosphere (e.g., Geiss et al., 1995b), this is an argument against significant contributions to the fast wind by plumes. Wilhelm and Bodmer (1998) found low neon-to-magnesium abundance ratios inside plumes with respect to inter-plume lanes, a distinction that is not seen in the fast solar wind. It thus seems appropriate to assume that the fast wind does indeed emanate from the darkest regions of solar coronal holes. The study of inter-plume lanes is hampered by the fact that the relatively bright plumes dominate the EUV emission inside the northern and southern plume assemblies. East and west of these assemblies, very dark regions of the corona could be seen on EIT/SOHO images during the minimum of solar activity. Their investigation is difficult, because of the faint ultraviolet emission, but the danger of any plume “contamination” is small, and the very fact that these regions are so dark might indicate that the energy delivered by the chromospheric network to the corona is transformed predominantly into the acceleration of the solar wind and not into EUV and UV radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad, I.A., and Withbroe, G.L. (1977) EUV Analysis of Polar Plumes, Solar Phys. 53, 397.

    Article  ADS  Google Scholar 

  • Antonucci, E., et al. (1997), First Results from UVCS: Dynamics of the Extended Corona, in Advances in the Physics of Sunspots, B. Schmieder, J. C. del Toro Iniesta, and M. Vazquez (eds.), ASP Conference Series 118, 273.

    Google Scholar 

  • Arnaud, M., and Rothenflug, R. (1985), An Updated Evaluation of Recombination and Ionization Rates, Astron. Astrophys. Suppl. Ser. 60, 425.

    ADS  Google Scholar 

  • Budnik, F., Schröder, K.-P., Wilhelm, K., and Glassmeier, K.-H. (1998), Observational Evidence for Coronal Mass Injection by “Evaporation” of Spicular Plasma, Astron. Astrophys. 334, 77.

    ADS  Google Scholar 

  • Bumba, V., Klvaňa, M., and Sykora, J. (1994), Coronal Holes and Photospheric Magnetic Field, in IAU Colloquium 144 Solar Coronal Structures, V. Rušin, P. Heinzel, and J.-C. Vial (eds.), VEDA Publishing Company, Bratislava, 4

    Google Scholar 

  • DeForest, C.E., et al. (1997), Polar Plume Anatomy: Results of a Co-ordinated Observation, Solar Phys. 175, 375.

    Article  Google Scholar 

  • Doschek, G.A., et al. (1997), Electron Densities in the Solar Polar Coronal Holes from Density Sensitive Line Ratios of Si VIII and Sx, Astrophys. J. 482, L109.

    Article  ADS  Google Scholar 

  • Dowdy, Jr., J.F., Rabin, D., and Moore, R.L. (1986), On the Magnetic Structure of the Quiet Transition Region, Solar Phys. 105, 35.

    Article  ADS  Google Scholar 

  • Doyle, J.G., Mason, H.E., and Vernazza, J.E. (1985), Interpretation of EUV Spectra from Loop Structures in an Active Region at the Limb, Astron. Astrophys. 150, 69.

    ADS  Google Scholar 

  • Dwivedi, B.N. (1991), Forbidden Line Ratios From Si VIII and Sx Coronal Ions, Solar Phys. 131, 49.

    Article  ADS  Google Scholar 

  • Feldman, U., Doschek, G.A., Mariska, J.T., Bhatia, A.K., and Mason, H.E. (1978), Electron Densities in the Solar Corona From Density-Sensitive Line Ratios in the Ni Isoelectronic Sequence, Astrophys. J. 226, 674.

    Article  ADS  Google Scholar 

  • Feldman, U., et al. (1997), A Coronal Spectrum in the 500-1610 Å Wavelength Range Recorded at a Height of 21 000 Kilometers Above the West Solar Limb by the SUMER Instrument on Solar and Heliospheric Observatory, Astrophys. J. Suppl. Ser. 113, 195.

    Article  ADS  Google Scholar 

  • Geiss, J., et al. (1995a), The Southern High-Speed Stream: Results from the SWICS Instrument on Ulysses, Science 268, 1033.

    Article  ADS  Google Scholar 

  • Geiss, J., Gloeckler, G., and von Steiger, R. (1995b), Origin of the Solar Wind From Composition Data, Space Sci. Rev. 72, 49.

    Article  ADS  Google Scholar 

  • Hassler, D.M., Wilhelm, K., Lemaire, P., and Schühle, U. (1997), Observations of Polar Plumes with the SUMER Instrument on SOHO, Solar Phys. 175, 375.

    Article  ADS  Google Scholar 

  • Hollandt, J., et al. (1996), Radiometric Calibration of the Telescope and Ultraviolet Spectrometer SUMER on SOHO, Appl. Opt. 35, 5125.

    Article  ADS  Google Scholar 

  • Huber, M.C.E., et al. (1974), Extreme-Ultraviolet Observations of Coronal Holes: Initial Results from Skylab, Astrophys. J. 194, L115.

    Article  ADS  Google Scholar 

  • Keenan, F.P., Kingston, A.E., Dufton, P.L., Doyle, J.G., and Widing, K.G. (1984), Mg IX and Si XI Line Ratios in the Sun, Solar Phys. 94, 91.

    Article  ADS  Google Scholar 

  • Kohl, J.L., et al. (1997), First Results from the SOHO Ultraviolet Coronagraph Spectrometer, Solar Phys. 175, 613.

    Article  ADS  Google Scholar 

  • Krieger, A.S., Timothy, A.F., and Roelof, E.C. (1973), A Coronal Hole and Its Identification as the Source of a High Velocity Solar Wind Stream, Solar Phys. 29, 505.

    Article  ADS  Google Scholar 

  • Laming, J.M., et al. (1997), Electron Density Diagnostics for the Solar Upper Atmosphere From Spectra Obtained by SUMER/SOHO, Astrophys. J. 485, 911.

    Article  ADS  Google Scholar 

  • Lemaire, P., et al. (1997), First Results of the SUMER Telescope and Spectrometer on SOHO, II. Imagery and Data Management, Solar Phys. 170, 105.

    Article  ADS  Google Scholar 

  • Lin, Y. (1994), Characteristics of Small-Scale Magnetic Fields in a Solar Coronal Hole, in IAU Colloquium 144 Solar Coronal Structures, V. Rusin, P. Heinzel, and J.-C. Vial (eds.), VEDA Publishing Company, Bratislava, 41.

    Google Scholar 

  • Moses, D., et al. (1997), EIT Observations of the Extreme Ultraviolet Sun, Solar Phys. 175, 571.

    Article  ADS  Google Scholar 

  • Newkirk, Jr., G., and Harvey, J. (1968), Coronal Polar Plumes, Solar Phys. 3, 321.

    Article  ADS  Google Scholar 

  • Rottman, G.J., Orrall, F.W., and Klimchuk, J.A. (1982), Measurements of Outflow from the Base of Solar Coronal Holes, Astrophys. J. 260, 326.

    Article  ADS  Google Scholar 

  • Saito, K. (1965), Polar Rays of the Solar Corona, Publications of the Astronomical Society of Japan 17, 1.

    ADS  Google Scholar 

  • Seely, J., Feldman, U., Schühle, U., Wilhelm, K., Curdt, W., and Lemaire, P. (1997), Turbulent Velocities and Ion Temperatures in the Solar Corona Obtained from SUMER Line Widths, Astrophys. J. 484, L87.

    Article  ADS  Google Scholar 

  • Summers, H.P., Brooks, D.H., Hammond, T.J., and Lanzafame, A.C.( 1996), Atomic Data and Analysis Structure (University of Strathclyde).

    Google Scholar 

  • Van de Hulst, H.C. (1950a), The Electron Density of the Solar Corona, Bull Astron. Inst. Netherlands 11, 135.

    ADS  Google Scholar 

  • Van de Hulst, H.C. (1950b), On the Polar Rays of the Corona, Bull. Astron. Inst Netherlands 11, 150.

    ADS  Google Scholar 

  • Wang, Y.-M., et al. (1997), Association of Extreme-Ultraviolet Imaging Telescope (EIT) Polar Plumes with Mixed-Polarity Magnetic Network, Astrophys. J. 484, L75.

    Article  ADS  Google Scholar 

  • Widing, K.G., and Feldman, U. (1989), Abundance Variations in the Outer Solar Atmosphere Observed in Skylab Spectroheliograms, Astrophys. J. 344, 1046.

    Article  ADS  Google Scholar 

  • Widing, K.G., and Feldman, U. (1992), Element Abundances and Plasma Properties in a Coronal Polar Plume, Astrophys. J. 392, 715.

    Article  ADS  Google Scholar 

  • Widing, K.G., and Feldman, U. (1993), Nonphotospheric Abundances in a Solar Active Region, Astrophys. J. 416, 392.

    Article  ADS  Google Scholar 

  • Wilhelm, K., et al. (1995), SUMER — Solar Ultraviolet Measurements of Emitted Radiation, Solar Phys. 162, 189.

    Article  ADS  Google Scholar 

  • Wilhelm, K., et al. (1997a), First Results of the SUMER Telescope and Spectrometer on SOHO, I. Spectra and Spectroradiometry, Solar Phys. 170, 75.

    Article  ADS  Google Scholar 

  • Wilhelm, K., et al. (1997b), Radiometric Calibration of SUMER: Refinement of the Laboratory Results under Operational Conditions on SOHO, Appl. Optics 36, 6416.

    Article  ADS  Google Scholar 

  • Wilhelm, K., and Bodmer, R. (1998), Solar EUV and UV Emission Line Observations Above a Polar Coronal Hole, Space Sci. Rev., in press.

    Google Scholar 

  • Wilhelm, K., et al. (1998a), The Solar Corona Above Polar Coronal Holes as Seen by SUMER on SOHO, Astrophys. J. 500, 1023.

    Article  ADS  Google Scholar 

  • Wilhelm, K., et al. (1998b), Solar Irradiances and Radiances of UV and EUV Lines During the Minimum of Sunspot Activity in 1996, Astron. Astrophys. 334, 685.

    ADS  Google Scholar 

  • Woch, J., et al. (1997), SWICS/Ulysses Observations: The Three-Dimensional Structure of the Heliosphere in the Declining/Minimum Phase of the Solar Cycle, Geophys. Res. Lett. 24, 2885.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Wilhelm, K. (1999). The Darkest Regions Of Solar Polar Coronal Holes Observed By Sumer On Soho. In: Büchner, J., Axford, I., Marsch, E., Vasyliūnas, V. (eds) Plasma Astrophysics And Space Physics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4203-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4203-8_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5828-5

  • Online ISBN: 978-94-011-4203-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics