Skip to main content

Self-Organized Criticality, Multi-Fractal Spectra, And Intermittent Merging Of Coherent Structures In The Magnetotail

  • Conference paper
Plasma Astrophysics And Space Physics
  • 358 Accesses

Abstract

In 1992, Chang suggested that substorm dynamics of the Earth’s magnetotail may be described by the stochastic behavior of a nonlinear dynamical system near forced or self-organized criticality (SOC). Subsequently, Chang (1997, 1998) demonstrated that multiscale intermittent turbulence of overlapping shear Alfvén and other plasma resonances is the underlying physics that can lead to the onset and evolution of substorms. Such a description provides a convenient explanation of the localized and sporadic nature of the bursty bulk flows that are commonly observed in the magnetotail (Angelopoulos et al., 1996; Lui, 1998). These concepts lead to a new paradigm for the understanding of the ever-elusive phenomenon of substorms. In this paper, we describe some of the basic physical concepts that play an important role in the development of these new ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angelopoulos, V., Coroniti, F. V., Kennel, C. F., Kivelson, M. G., Walker,R. J., Russell, C. T., McPherron, R. L., Sanchez, E., Meng, C. I., Baumjohann, W., Reeves, G. D., Belian, R. D., Sato, N., Fris-Christensen, E., Sutcliffe, F. R., Yumoto, K., Harris, T. (1996) Multi-point analysis of a BBF event on April 11, 1985, J. Geophys. Res., Vol. no. 101, p. 4967.

    Article  ADS  Google Scholar 

  • Baker, D., Klimas, A., McPherron, R., and Büchner, J. (1990) The evolution from weak to strong geomagnetic activity: an interpretation in terms of deterministic chaos, Geophys. Res. Lett., Vol. no. 17, p. 41.

    Article  ADS  Google Scholar 

  • Baker, D. N. (1998) Substorms: a global magnetospheric instability, in Proc. 4th Intern. Conf. on Substorms, edited by Y. Kamide, Tokyo, Terra Scientific Publishing Company.

    Google Scholar 

  • Büchner, J. (1998) Kinetic effects controlling tail reconnection in the course of magnetospheric substorms, in Proc. 4th Intern. Conf. on Substorms, edited by Y. Kamide, Tokyo, Terra Scientific Publishing Company.

    Google Scholar 

  • Chang, T. (1992) Low-dimensional behavior and symmetry breaking of stochastic systems near criticality — can these effects be observed in space and in the laboratory?, IEEE Trans. on Plasma Science, Vol. no. 20, p. 691.

    Article  ADS  Google Scholar 

  • Chang, T., Vvedensky, D. D., and Nicoll, J. F. (1992) Differential renormalization-group generators for static and dynamic critical phenomena, Physics Reports, Vol. no. 217, p. 279.

    Article  MathSciNet  ADS  Google Scholar 

  • Chang, T. (1997) Sporadic localized reconnections and intermittent turbulence in the magnetotail, Focus talk at the IPELS Workshop on interrelationship between experiments in laboratory and space plasmas held in Maui, Hawaii in June 1997. (See web site: http://ipels.physics.ucla.edu/ipels).

    Google Scholar 

  • Chang, T. (1998) Sporadic localized reconnections and multiscale intermittent turbulence in the magnetotail, in Encounter between Global Observations and Models in the ISTP Era, edited by J. L. Horwitz, D. L. Gallagher, and W. K. Peterson, AGU Monograph, Washington, D.C., American Geophysical Union, Vol. no. 104, p. 193

    Google Scholar 

  • Chapman, S. C., Watkins, N. W., Dendy, R. O., Helander, P., and Rowlands, G. (1998) A simple avalanche model as an analogue for magnetospheric activity, Geophys. Res. Lett., Vol. no. 25, p. 2397.

    Article  ADS  Google Scholar 

  • Consolini, G. (1997) Sandpile cellular automata and magnetospheric dynamics, in Cosmic Physics in the Year 2000, edited by S. Aiello, N. Iucci, G. Sironi, A. Treves, and U. Villante, Proc. Vol. no. 58, SIF, Bologna, Italy.

    Google Scholar 

  • Drake, J. (1997) Collisionless magnetic reconnection, Focus talk at the IPELS Workshop on interrelationship between experiments in laboratory and space plasmas held in Maui, Hawaii in June 1997. (See web site: http://ipels.physics.ucla.edu/ipels).

    Google Scholar 

  • Galeev, A. A., Kuznetsova, M. M., and Zeleny, L. M. (1986) Magnetopause stability threshold for patchy reconnection, Space Science Reviews, Vol. no. 44, p. 1.

    Article  ADS  Google Scholar 

  • Gekelman, W., Vincena, S., and Leneman, D. (1997) Experimental observations of shear Alfvén waves generated by narrow current channels, Plasma Phys. and Contr. Fusion, Vol. no. 39, pp. A101–112.

    Article  ADS  Google Scholar 

  • Grassberger, P., and Procaccia, I. (1983) Measuring the strangeness of strange attractors, Physica, Vol. no. 9D, p. 189.

    MathSciNet  ADS  Google Scholar 

  • Hosino, M., Nishida, A., and Yamamoto, T. (1994) Turbulent magnetic field in the distant magnetotail: Bottom-up process of plasmoid formation Geophys. Res. Lett., Vol. no. 21, p. 2935.

    Article  ADS  Google Scholar 

  • Kennel, C.(1995) Convection and Substorms: Paradigms of Magnetospheric Phenomenology. Oxford University Press, Oxford, England.

    Google Scholar 

  • Kivelson, M., and Kepko, L., private communication.

    Google Scholar 

  • Klimas, A. J., Baker, D. N., and Roberts, D. A. (1991) Linear prediction filters for linear and nonlinear geomagnetic activity Geophys. Res. Lett., Vol. no. 18, p. 1635.

    Article  ADS  Google Scholar 

  • Klimas, A. J., Baker, D. N., Roberts, D. A., Fairfield, D. H., and Büchner, J. (1992) A nonlinear dynamical analogue model of geomagnetic activity, J. Geophys. Res., Vol. no. 97, p. 12253.

    Article  ADS  Google Scholar 

  • Klimas, A. J., Vassiliadis, D., Valdivia, J. A., and Baker, D. N. (1998) Analogue analysis of the solar wind Vbz to AL electrojet index relationship, in Proc. 4th Intern. Conf. on Substorms, edited by Y. Kamide, Tokyo, Terra Scientific Publishing Company.

    Google Scholar 

  • Lui, A. T. Y. (1996) Current disruptions in the Earth’s magnetosphere: observations and models, J. Geophys. Res., Vol. no. 101, p. 4899.

    Article  ADS  Google Scholar 

  • Lui, A. T. Y. (1998) Plasma sheet behavior associated with auroral breakups, in Proc. 4th Intern. Conf. on Substorms, edited by Y. Kamide, Tokyo, Terra Scientific Publishing Company.

    Google Scholar 

  • Milovanov, A., Zelenyi, L., and Zimbardo, G. (1996) Fractal structures and power law spectra in the distant Earth’s magnetotail, J. Geophys. Res., Vol. no. 101, p. 19903.

    Article  ADS  Google Scholar 

  • Roberts, D. A., Baker, D. N., Klimas, A. J., and Bargatze, L. F. (1991) Indications of low dimensionality in magnetospheric dynamics, Geophys. Res. Lett. Vol. no. 18, pp. 151–154.

    Article  ADS  Google Scholar 

  • Shan, L. H., Goertz, C. K., and Smith, R. A. (1991) Chaotic appearance of the AE index, Geophys. Res. Lett., Vol. no. 18, p. 1647.

    Article  ADS  Google Scholar 

  • Sharma, A. S., Vassiliadis, D., and Papadopoulos, K. (1993) Re-construction of low-dimensional magnetospheric dynamics by singular spectrum analysis, Geophys. Res. Lett., Vol. no. 20, p. 335.

    Article  ADS  Google Scholar 

  • Stenzel, R., Urrutia, J. M., and Rousculp, C. L. (1996) Small-scale current structures in plasmas, Physics of Space Plasmas, Vol. no. 14, p. 491.

    Google Scholar 

  • Taylor, J. B. (1974) Relaxation of toroidal plasma and generation of reverse magnetic fields, Phys. Rev. Lett., Vol. no. 33, p. 1139.

    Article  ADS  Google Scholar 

  • Tetreault, D. (1992) Turbulent relaxation of magnetic fields: 1. coarse-grained dissipation and reconnection, J. Geophys. Res., Vol. no. 97, p. 8531

    Article  ADS  Google Scholar 

  • Vassiliadis, D. V., Sharma, A. S., Eastman, T. E., and Papadopoulos, K. (1990) Low-dimensional chaos in magnetospheric activity from AE time series, Geophys. Res. Lett., Vol. no. 17, p. 1841.

    Article  ADS  Google Scholar 

  • Yamada, M., Ono, Y., Hayakawa, A., and Katsurai, M. (1990) Magnetic reconnection of plasma toroids with cohelicity and counterhelicity, Phys. Rev. Lett., Vol. no. 65, p. 721.

    Article  ADS  Google Scholar 

  • Zelenyi, L. M., Milovanov, A. V., and Zimbardo, G. (1998) Multiscale magnetic structure of the distant tail: self-consistent fractal approach, in The Earth’s Magnetotail: New Perspectives, AGU Monograph, Washington, D.C., American Geophysical Union.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Chang, T. (1999). Self-Organized Criticality, Multi-Fractal Spectra, And Intermittent Merging Of Coherent Structures In The Magnetotail. In: Büchner, J., Axford, I., Marsch, E., Vasyliūnas, V. (eds) Plasma Astrophysics And Space Physics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4203-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4203-8_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5828-5

  • Online ISBN: 978-94-011-4203-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics