Skip to main content

Pathogenetical and Clinical Aspects of Antisperm Immunity

  • Chapter
Reproductive Immunology

Abstract

Antisperm antibodies (ASA) have various possible levels of interference to impair the fertilizing capacity of human spermatozoa. In the semen, it has been demonstrated that ASA can induce the formation of spermagglutination and that they also have a negative effect on sperm motility and, after intra-vaginal ejaculation, on their ability to migrate through female genital secretions. ASA can also interfere with the fusion of the gametes, which is the key event of fecundation. The evidence suggests that ASA may inhibit fertilization by binding specifically to membrane Ag involved in the sperm-oocyte interaction. They can also inhibit zona pellucida recognition and penetration and the sperm-vitellus interaction as well as triggering a premature acrosome reaction. To date, ASA remain a serious and only partially understood factor that can compromise the success of the insemination and fertilization techniques used to treat infertility. Concerning male infertile patients, our data show a strict correlation between systemic and local immunization and between ASA presence in sera and bound on sperm surface. Furthermore, in our experience if specific Ig against sperm antigens bind to spermatozoa at a percentage higher than 70%, they they are able to interfere, in vivo, both with sperm-mucus interaction and sperm-utero-fallopian passage regardless of Ig class or site of the bond. In vitro, only the ASA bound to the acrosomal surface seem to prevent the sperm binding to the oocyte. As far as the immunosuppressive activity by human seminal plasma is due to multiple factors and reduced amount of these factors can contribute to the appearance of the ASA. Recent findings suggest that Fas ligand (FasL), expressed on the surface of Sertoli cells, is involved in maintaining the immune privilege by preventing activated lymphocytes from infiltrating the testis. The membrane-bound human FasL was found to be converted to a soluble from (sFasL) by the action of a matrix metalloproteinase-like. Human sFasL is a 26–35 kD glycoprotein and consists of the extracellular region of FasL which bind to Fas to induce apoptosis. It has been shown that activated human peripheral T cells accumulate FsL in the supernatant. These immunosuppressive activities have been proposed to play a role in the prevention of lymphocytes responses against sperm autoantigens in the male genital tract. In a recent experiment we studied 50 subjects—22 normozoospermic, 9 ASA positive, 6 dyspermic, 5 with genital tract inflammation, 5 azoospermic, 3 with genital tract obstruction—and demonstrated the presence of sFasL using Western blotting. However, there was no apparent relationship between presence of FasL and ASA presence. A much larger number of patients would be needed to correlate sFasL with antisperm autoimmunization.p

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Head J.R., Neaves W.B., Billingham R.E. Immune privilege in the testis. Basic parameters of allograft survival. Transplantation 1983; 36: 423–431.

    Article  PubMed  CAS  Google Scholar 

  2. Head J.R., Billingham R.E. Immune privilege in the testis. II Evaluation of potential local factors. Transplantation 1985; 40: 269–275.

    Article  PubMed  CAS  Google Scholar 

  3. Tung K.S.K. Autoimmunity in the testis. In: Dhindsa D.H., Shumacher GFB (eds), Immunological aspects of infertility and fertility regulation, New York, Elsevier North Holland; 1980; 33–91

    Google Scholar 

  4. Tung K.S., Lu C.Y. Immunologic basic of reproductive failure. In: Krause F.T., Damjanov I., Kaufman N. (eds) Pathology of Reproductive Failure, Baltimore; 1991; 308–333.

    Google Scholar 

  5. Dym M., Fawcett D.W. The blood-testis barrier of the rat and the physiological compartmentation of the seminiferous epithelium. Biol. Reprod. 1970; 3: 308–326.

    PubMed  CAS  Google Scholar 

  6. Stefanini M., De Cesaris P., Filippini A., Cervelli C., Riccioli A., Muci S., Ziparo E. Mechanisms of immune tolerance in the testis: influence of the local factors. In: Dallai R. (ed), Sex Origin and Evolution, Modena: UZI, Mucchi; 1992; 299–306.

    Google Scholar 

  7. Yule T.D., Montoya G.D., Russell L.D., Williams T.M., Tung K.S. Autoantigenic germ cells exist outside the blood-testis barrier. J. Immunol. 1988; 141: 1161–1167.

    PubMed  CAS  Google Scholar 

  8. De Cesaris P., Filippini A., Cervelli C., Riccioli A., Muci S., Starace G., Stefanini M., Ziparo E. Immunosuppressive molecules produced by Sertoli cells cultured in vitro: biological effects on lymphocytes. Biochem. Biophy. Res. Commun. 1992; 186: 1639–1646.

    Article  Google Scholar 

  9. Bellgrau D., Gold D. Arole for CD95 ligand in preventing graft rejection. Nature 1995; 377: 630–632.

    Article  PubMed  CAS  Google Scholar 

  10. Tanaka M., Suda T., Takahashi T., Nagata S. Expression of the functional soluble form of human Fas ligand in activated lymphocytes. EMBO J. 1995; 14: 1129–1135.

    PubMed  CAS  Google Scholar 

  11. Mahi-Brown C.A., Yule T.D., Tung KSK. Evidence for active immunological regulation in prevention of testicular autoimmune disease independent of the blood-testis barrier. Am. J. Reprod. Immunol. Microbiol. 1998; 16: 165–170.

    Google Scholar 

  12. Witkin S.S. Mechanisms of active suppression of the immune response to spermatozoa. Am. J. Reprod. Immunol. Microbiol. 1988; 17: 61–64.

    PubMed  CAS  Google Scholar 

  13. Yule T.D., Mahi-Brown C.A., Tung K.S.K. (1990). Role of testicular autoantigens and influence of lymphokines in testicular autoimmune disease. J. Reprod. Immunol. 1990; 18: 89–103.

    Article  PubMed  CAS  Google Scholar 

  14. Witkin S.S. Failure of sperm-induced immunosuppression: association with antisperm antibodies in women. Am. J. Obstet. Gynecol. 1989; 160: 1166–1168.

    PubMed  CAS  Google Scholar 

  15. Rumke Ph., Hellinga G. Autoantibodies against spermatozoa in steril men. Am J. Clin. Pathol. 1959; 32: 357–363.

    PubMed  CAS  Google Scholar 

  16. Acosta A., Oehninger S., Morshedi M., Swanson R.J., Scott R., Irianni F. Assisted reproduction in the diagnosis and treatment of the male factor. Obstet. Gynecol. Surv. 1989; 44: 1–18.

    Article  PubMed  CAS  Google Scholar 

  17. Ansbacher R., Keung-Yeung K., Behrman S.J. Clinical significance of sperm antibodies in infertile couples. Fertil Steril 1973; 24: 305–308.

    PubMed  CAS  Google Scholar 

  18. Isidori A., Dondero F., Lenzi A. Immunobiology of male infertility. Hum. Reprod. 1988; 3: 75–77.

    Article  PubMed  CAS  Google Scholar 

  19. Marcus Z.H., Dondero F., Lunenfeld B., Lewine L.M. Effect of the inhibitory material from male genital tract on natural killing activities. Imm. Lett. 1985; 10: 1

    Article  Google Scholar 

  20. De Simone C., Caretto G., Grassi, P.P., Covelli V., Lenzi A., Antonaci S., Jirillo E. Inhibition of lymphocytemediated activity by human seminal plasma. Am. J. Reprod. Immunol. Microbiol. 1988; 171: 1–4.

    Google Scholar 

  21. Dondero F., Lenzi A., Gandini L., Lombardo F., De Simone C., Jirillo E. Evaluation of the immunomodulating effects of seminal plasma fractions by a model of anti-bacterial activity, In: Proc. 4° Int. Cong. Androl., Serio M. (Ed.) Monduzzi. Firenze, 1989, 61.

    Google Scholar 

  22. Altamura M., Potenza M.A., Geronimo M.G., Gandini L., De Simone C., Lenzi A., Antonaci S. and Jirillo E. Supplementation of male inhibitory material to lipid A actived human monoclear cell supernatants contributes to the suppression of polymorphonuclear cell phagocytosis. Microbios. 1993; 76: 181–187.

    PubMed  CAS  Google Scholar 

  23. Munoz M.G., Posnett D.N. and Witkin S.S. Enrichment of γδT lymphocytes in human semen: relation between γδT cell concentration and antisperm antibody status. J. Reprod. Immunol. 1992; 22: 47–57.

    Article  PubMed  CAS  Google Scholar 

  24. Munoz M.G. and Witkin S.S. Autoimmunity to spermatozoa, asymptomatic Chlamydia Trachomatis genital tract infection and γδT-lymphocytes in seminal fluid from the male partners of couples with unexplained infertility. Hum. Reprod. 1995; 5: 1070–1074.

    Google Scholar 

  25. Janeway C.A. Jr. Frontiers of the immune system. Nature 1988: 333: 804–806.

    Article  PubMed  Google Scholar 

  26. Munk M.E., Gatrill A.J. and Kaufmann S.H.E. In-vitro activation of human γδT cells cells by bacteria: evidence for specific interleukin secretion and target cell lysis. Curr. Top Microbiol. Immunol. 1991; 173: 159–195.

    Article  PubMed  CAS  Google Scholar 

  27. Follows G.A. Munk M.E., Gatrill A.J., Conradt P. and Kaufmann S.H.E. Gamma interferon and interleukin 2, but not interleukin 4, are detectable in γδT-cell cultures after activation with bacteria. Infect. Immun. 1992; 60: 1229–1231.

    PubMed  CAS  Google Scholar 

  28. Lam V., deMars R., Chen B.P., Hank J.A., Kovats S., Fish P. and Sondel P.M. Human T cell receptor expressing T cell lines recognize MHC controlled elements on autologous EBV-LCL that are not HLA-A,-B,-C,-DR,-DQ or-DP. J. Immunol. 1990; 145: 36–45.

    PubMed  CAS  Google Scholar 

  29. Anderson DJ., Bach D.J., Yunis E.J. and de Wold W.C. Majorhistocompatibility antigens are not expressed on human epididymal sperm. J. Immunol. 1982; 129: 452–454.

    PubMed  CAS  Google Scholar 

  30. Munoz M.G. and Witkin S.S. Activation of circulating γδT-lymphocytes by autologous sperm from men sensitized to sperm. J. Reprod. Immunol. 1993; 25: 265–275.

    Article  PubMed  CAS  Google Scholar 

  31. Bigazzi P.E. Autoimmune responses to spermatozoa in vasectomized rats and mice of different inbred strains. In: Rose N.R., Bigazzi P.E. and Warner N.L. (eds), Genertic Control of Autoimmune Disease. New York; Elsevier; 1978: 445–452.

    Google Scholar 

  32. Tarter T.H., Alexander N.J. Complement inhibiting activity of seminal plasma. Am. J. Reprod. Immunol. 1984; 6: 28–32.

    PubMed  CAS  Google Scholar 

  33. Lenzi A., Gandini L., Claroni F., Dondero F. Post vasectomy antisperm immune reaction after testosterone-induced azoospermia. Br J. Urol. 1987; 59: 277–279.

    Article  PubMed  CAS  Google Scholar 

  34. Imade G.E., Baker H., de Kretzer D.M. and Hedger M.P. Human Reproduction 1997; 12: 256–262.

    Article  PubMed  CAS  Google Scholar 

  35. Lauretti P., Riccioli A., Tripiciano A., Padula F., De Cesaris P., Ziparo E., Lenzi A., and Filippini A. Presence of soluble Fas ligand in human seminal plasma. Int. J. Androl 1998; 21: sup. 1;49.

    Google Scholar 

  36. Lanzavecchia A. Identifying strategies for immune intervention. Science 1993; 260: 937–944.

    Article  PubMed  CAS  Google Scholar 

  37. Stefanini M., Conti M., Geremia R. and Ziparo E. Regulatory mechanisms of mammalian spermatogenesis. In: Metz C.B., Monroy A. (eds.), Biology of Fertilization. Orlando. Academic Press; 1985; 59–102.

    Chapter  Google Scholar 

  38. Gerard N., Syed V. and Jegou B. Lipopolysaccharide, latex beads and residual bodies are potent activators of Sertoli cell interleukin-1α production. Biochem. Biophys. Res. Commun. 1992; 185: 154–161.

    Article  PubMed  CAS  Google Scholar 

  39. Syed V., Gérard N., Kaipia A., Bardin C.W., Parvinen M. and Jégou B. Identification, ontogeny, and regulation of an interleukin-6-like factor in the rat seminiferous tubule. Endocrinology 1993; 132: 293–299.

    Article  PubMed  CAS  Google Scholar 

  40. Filippini A., Russo M.A., Palombi F., Bertalot G., De Cesaris P., Stefanini M. and Ziparo E. Modulation of phagocitic activity in cultured Sertoli cells. Gamete Research 1989; 23: 367–375.

    Article  PubMed  CAS  Google Scholar 

  41. Kohno S., Ziparo E., Marek L.F. and Tung K.S. Murine Sertoli Cells: major histocompatibility antigens and glycoconjugates. J. Reprod. Immunol. 1983; 5: 339–350.

    Article  PubMed  CAS  Google Scholar 

  42. Hirano T., Yasukawa K., Harada H., Taga T., Watanabe Y., Matsuda, T., Kashiwamura S., Nakajima K., Koyama K. and Iwamatsu A. Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature 1986; 324: 73–76.

    Article  PubMed  CAS  Google Scholar 

  43. German R.D., Jacobs K.A., Clark S.C. and Raulet D.H. B-cell-stimulatory factor 2 (beta 2-interferon) functions as a second signal for interleukin 2 production by mature murine T cells. Proc. Natl. Acad. Sci. 1987; U.S.A. 84: 7629–7633.

    Article  Google Scholar 

  44. Hirano T., Matsuda T., Turner M., Miyasaka N., Buchan G., Tang B., Sato K., Shimizu M., Maini R. and Feldmann M. Excessive production of interleukin 6/B cell stimulatory factor-2 in rheumatoid arthritis. Eur. J. Immunol. 1988; 18: 1797–1801.

    Article  PubMed  CAS  Google Scholar 

  45. Suematsu S., Matsuda T., Aozasa K., Akira S., Nakano N., Ohno S., Miyazaki J., Yamamura K., Hirano T. and Kishimoto T. IgGl plasmocytosis in interleukin 6 transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 1989; 86: 7547–7551.

    Article  PubMed  CAS  Google Scholar 

  46. Fiers W. Tumor necrosis factor. Caracterization at the molecular, cellular and in vivo level. FEBS 1991; 285: 199–212.

    Article  CAS  Google Scholar 

  47. Pujol-Borrell R., Todd I., Doshi M., Bottazzo G.F., Sutton R., Gray D., Adolf G.R. and Feldmann M. HLA class II induction in human cells by interferon-gamma plus tumor necrosis factor or lymphotoxin. Nature 1987; 326: 304–306.

    Article  PubMed  CAS  Google Scholar 

  48. Moore C. and Hutson J.C. Physiological relevance of tumor necrosis factor in mediating macrophage-Leydig cell interaction. Endocrinology 1994; 134: 63–69.

    Article  PubMed  CAS  Google Scholar 

  49. Riccioli A., Filippini A., De Cesaris P., Barbacci E., Stefanini M., Starace G. and Ziparo E. Inflammatory mediators increase surface expression of integrin ligands, adhesion to lymphocytes, and secretion of interleukin 6 in mouse Sertoli cells. Proc. Natl. Acad. Sci. USA 1995; 92: 5808–5812.

    Article  PubMed  CAS  Google Scholar 

  50. Dondero F., Lenzi A., Lombardo F. Antisperm antibody detection. Proc. XV World Congress of Anatomic and Clinical Pathology. 1989; p. 533.

    Google Scholar 

  51. Shulman S., Mininberg D.T. and Davis J.E. Significant immunologie factors in male infertility. J. Urol. 1978; 119: 231–234.

    PubMed  CAS  Google Scholar 

  52. Hendry W.F., Hughes L., Scammell G., Pryor J.P., and Hargreave T.B. Comparison of prednisolone and placebo in subfertile men with antibodies to spermatozoa. Lancet 1990; 335: (8681).

    Google Scholar 

  53. Lombardo F., Gandini L., Anticoli L., Salacone P., Paoli D., Lenzi A., Dondero F. Can computer analyzed sperm motility be normal in seminal samples with high percentage of antisperm antibody bound to sperm surface? EOS 1992; 2: 115.

    Google Scholar 

  54. Matson P.L., Junk S.M., Spittle J.W. and Yovich J.L. Effects of antisperm antibodies in seminal plasma upon sperm function. Int. J. Androl. 1988; 11: 101–106.

    Article  PubMed  CAS  Google Scholar 

  55. Clarke G.N. Immunoglobulin class and regional specificity of antispermatozoal autoantibodies blocking cervical mucus penetration by human spermatozoa. Am. J. Reprod. Immunol. Microbiol. 1988; 16: 135.

    PubMed  CAS  Google Scholar 

  56. Barratt C.L.R., Dunphy B.C., McLeod I. and Cooke I.D. The poor prognostic value of low to moderatelevels of sperm surface-bound antibodies. Hum. Reprod. 1992; 7: 95–98.

    Article  PubMed  CAS  Google Scholar 

  57. London S.N., Haney A.F. and Weinberg J.B. Macrophages and infertility: enhancement of human macrophage-mediated sperm killing by antisperm antibodies. Fertil. Steril. 1985; 43: 274–278.

    PubMed  CAS  Google Scholar 

  58. Wang C., Barker H.W.G., Jennings G., Burger H.E. and Lutjen P. Interaction between human cervical and sperm surface antibodies. Fertil. Steril. 1985; 44: 484–488.

    PubMed  CAS  Google Scholar 

  59. Parslow J.M. Poulton T.A., Besser G.M. and Hendry W.F. The clinical relevance of classes of immunoglobulins on spermatozoa from infertile and vasovasostomized males. Fertil. Steril. 1985; 43: 621–627.

    PubMed  CAS  Google Scholar 

  60. Kremer J. and Jager S. Characteristics of anti-spermatozoal antibodies responsible for the shaking phenomenon with special regard to immunoglobulin class and antigen-reactive sites. Int. J. Androl. 1980; 3: 143–152.

    Article  PubMed  CAS  Google Scholar 

  61. Sharma K.K., Barratt C.L.R., Pearson M.J. and Cooke I.D. Oral steroid therapy for subfertile males with antisperm antibodies in the semen: prediction of the responders. Hum. Reprod. 1985; 10: 103–109.

    Article  Google Scholar 

  62. Lenzi A., Gandini L., Lombardo F., Alfano P., Anticoli-Borsa L., Dondero F. Preliminary data on sperm-mucus interaction and sperm-bound antibodies regarding per cent positivity Ig class and site of the reaction. In: Spera G., Gnessi L. (eds), Unexplained infertility: basic and clinical aspects. New York: Raven Press; 1985: 265–271.

    Google Scholar 

  63. Lenzi A., Gandini L., Claroni F., Lombardo F., Morrone S., Dondero F. Immunological usefulness of semen manipulation for artificial insemination homologous (AIH) in subjects with antisperm antibodies bound to sperm surface. Andrologia 1988; 20 (4): 314–318.

    Google Scholar 

  64. Micara G., Moro M., Aragona C., Gandini L., Lenzi A., Dondero F. Evaluation of the male factor in relation to in vitro fertilization. In: Capitanio G. (ed.), GIFT–From Basic to Clinics. Raven Press; 1992: 432–437.

    Google Scholar 

  65. Branson R.A., Cooper G.W., Rosenfeld D.L. Detection of sperm specific antibodies on the spermatozoa surface by immunobead binding. Arch. Androl. 1982; 9: 61.

    Google Scholar 

  66. Drife J.O. Tubal pregnancy. Br. Med. J. 1990; 301: 1057–1058.

    Article  CAS  Google Scholar 

  67. Gleicher N., El-Roeiy A., Confino E. and Friberg J. Reproductive failure because of autoantibodies: unexplained infertility and pregnancy wastage. Am. J. Obstet. Gynecol. 1989; 160: 1376–1385.

    PubMed  CAS  Google Scholar 

  68. Kamada M., Daitoh T., Hasebe H., Irahara M., Yamano S. and Mori T. Blocking of human fertilization in vitro by sera with sperm. Am. J. Obstet. Gynecol. 1985; 153: 328–331.

    PubMed  CAS  Google Scholar 

  69. Munoz de Vera G., Marquant-Le Guinne B., De Almeida M., Voisin G. A. Role of guineapig autoantigens in sperm binding to the zona pellucida and oocyte penetration. J. Reprod. Fertil. 1986; 77: 347–353.

    Article  Google Scholar 

  70. Clarke G.N., Lopata A., McBain J.C., Baker H.W.G. and Johnston W.I.H. Effect of sperm antibodies in males on human in vitro fertilization (IVF). Am. J. Reprod. Immunol. Microbiol. 1985; 8: 62–66.

    PubMed  CAS  Google Scholar 

  71. Mandelbaum S.L., Diamond S.P., DeCherney A.H. Relationship of antisperm antibodies to oocyte fertilization in in vitro fertilization-embryo transfer. Fertil. Steril. 1987; 47: 644.

    PubMed  CAS  Google Scholar 

  72. Marquant-Le Guinne B., De Almeida M. Role of guinea-pig sperm autoantigens in capacitation and the acrosome reaction. J. Reprod. Fertil. 1986; 77: 337.

    Article  Google Scholar 

  73. Alexander N.J., Sampson J.H. and Fulgham D.C. Pregnancy rate in patients treated for antisperm antibodies with prednisoone. Int. J. Fertil. 1983; 28: 63–67.

    PubMed  CAS  Google Scholar 

  74. Hendry W.F., Stedronska J., Hughes L., Cameron K.M. and Pugh R.C.B. Steroid treatment of male subfertility caused by antisperm antibodies. Lancet, ii. 1978; 498–500.

    Google Scholar 

  75. De Almeida M. and Jouannet P. Dexamethasone therapy of infertile men with sperm autoantibodies: immunological and sperm follow-up. Clin. Exp. Immunol. 1981; 44: 567–575.

    PubMed  Google Scholar 

  76. Bals-Pratsch M., Doren M., Karbowsky B., Schneider H.P.G. and Nieschlag E. Cyclic corticosteroid immunosuppression is unsuccessful in treatment of sperm antibody related male infertility.: a controlled study. Hum. Reprod. 1992; 7: 99–104.

    PubMed  CAS  Google Scholar 

  77. Haas G.G. Jr. and Manganiello P. A double-blind, placebo-controlled study of the use of methilprednisolone in infertile men with sperm associated immunoglobulins. Fertil. Steril. 1987; 47: 295–301.

    PubMed  Google Scholar 

  78. Räsänen M., Läahteenmäki A., Saarikoski S. and Agrawal Y.P. Comparison of flow cytometric measurement of seminal antisperm antibodies with the mixed antiglobulin reaction and the serum tray agglutination test. Fertil. Steril. 1994; 61: 143–150.

    PubMed  Google Scholar 

  79. Läahteenmäki A., Veilahti J. and Hovatta O. Intra-uterine insemination versus cyclic, low-dose prednisolone in couples with male antisperm antibodies. Hum. Reprod. 1995; 10: 142–147.

    Article  Google Scholar 

  80. Gandini L., Lenzi A.,Culasso F., Lombardo F., Paoli D. and Dondero F. Study of antisperm antibodies bound to the sperm cell surface and their relationship to circulating ASA. Am. J. Reprod. Immunol. 1995; 34: 375–380.

    PubMed  CAS  Google Scholar 

  81. Lombardo F., Gandini L., Lenzi A., Dondero F. Improvement of sperm parameters during unsuccessful steroid therapy for antisperm antibodies (ASA). Am. J. Immunol 1995; 33:6.

    Google Scholar 

  82. Acosta A., van der Merwe J., Dondel G., Kruger T., Saylgan A., Franken D. and Kolm P. Fertilization efficiency of morphologically abnormal spermatozoa in assisted reproduction is further impaired by antisperm antibodies on the male partner’s sperm. Fertil. Steril. 1994; 62: 826–833.

    PubMed  CAS  Google Scholar 

  83. Dmowski W.P., Rana N., Michalowska J. et al. The effect of endometriosis, its stage and activity, and of autoantibodies on in vitro fertilization and embryo transfer success rates. Fertil. Steril. 1995; 63: 555–562.

    PubMed  CAS  Google Scholar 

  84. Kiser G.C., Alexander N.J., Fuchs E.F., Fulgham D.L. In vitro immune absorption of antisperm antibodies with immunobead-rise, immunomagnetic, and immunocolumn separation techniques. Fertil. Steril. 1987; 47: 466.

    PubMed  CAS  Google Scholar 

  85. Nagy Z.P., Verheyen G., Liu J., Joris H., Janssenswillen C., Wisanto A., Devroey P. and Van Steirteghem A.C. Results of 55 intracytoplasmic sperm injection cycles in the treatment of male-immunological infertility. Hum. Reprod. 1995; 10: 1775–1780.

    PubMed  CAS  Google Scholar 

  86. Srivastava G.N., Sheikhnejad R.G., Fayrer-Hosken R., Malter H., Brackett B.G. Inhibition of fertilization of rabbit ova in vitro by antibody to the inner acrosomal membrane of rabbit spermatozoa. J. Exp. Zool. 1986; 238: 99.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dondero, F. et al. (1999). Pathogenetical and Clinical Aspects of Antisperm Immunity. In: Gupta, S.K. (eds) Reproductive Immunology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4197-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4197-0_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5825-4

  • Online ISBN: 978-94-011-4197-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics