Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 549))

  • 492 Accesses

Abstract

We discuss the origin of topological defects in phase transitions and analyze their role as a “diagnostic tool” in the study of the non-equilibrium dynamics of symmetry breaking. Homogeneous second order phase transitions are the focus of our attention, but the same paradigm is applied to the cross-over and inhomogeneous transitions. The discrepancy between the results in 3He and 4He is discussed in the light of recent numerical studies. The possible role of the Ginzburg regime in determining the vortex line density for the case of a quench in 4He is raised and tentatively dismissed. The difference in the anticipated origin of the dominant signal in the two (3He and 4 He) cases is pointed out and the resulting consequences for the subsequent decay of vorticity are noted. The possibility of a significant discrepancy between the effective field theory and (quantum) kinetic theory descriptions of the order parameter is briefly touched upon, using atomic Bose-Einstein condensates as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zurek, W. H. (1984), ‘Experimental Cosmology: strings in superfluid Helium’, Los Alamos preprint LA-UR-84-3818.

    Google Scholar 

  2. Zurek, W.H. (1985) Cosmological experiments in superfluid Helium, Nature 317 505.

    Article  ADS  Google Scholar 

  3. Zurek, W.H. (1993) Cosmic strings in laboratory superfluids and topological remnants of other phase transitions, Acta Physica Polonica B 24 1301.

    Google Scholar 

  4. Kibble, T.W.B. (1976) Topology of cosmic domains and strings, J. Phys. A 9, 1387.

    Article  ADS  Google Scholar 

  5. Kibble, T.W.B. (1980) Some implications of a cosmological phase-transition, Phys. Rep. 67, 183.

    Article  MathSciNet  ADS  Google Scholar 

  6. Gill, A.J. (1997), Baryon Density in the Central Region of a Heavy-Ion Collision, hep-ph/9706327.

    Google Scholar 

  7. Dziarmaga, J. and Sadzikowski, M. (1999) Antibaryon density in the central rapidity region of a heavy ion collision, Phys.Rev.Lett. 82, 4192.

    Article  ADS  Google Scholar 

  8. Volovik, G. (1996) Cosmology, Particle Physics and Superfluid 3He, Czech J. Phys. 46, 3048.

    Article  ADS  Google Scholar 

  9. Bunkov, Y.M., and Timofeevskaya, O.D. (1998) “Cosmological” scenario for A-B phase transition in superfluid 3He Phys. Rev. Lett. 80 1308.

    Article  Google Scholar 

  10. Laguna, P. and Zurek, W.H. (1997) Density of kinks after a quench: When symmetry breaks, how big are the pieces?, Phys. Rev. Lett. 78, 2519.

    Article  ADS  Google Scholar 

  11. Laguna, P. and Zurek, W.H. (1998) Critical Dynamics of Symmetry Breaking: Quenches, Dissipation and Cosmology, Phys. Rev. D58, 5021.

    Google Scholar 

  12. Yates A. and Zurek, W. H. (1998) Vortex formation in two dimensions: When symmetry breaks, how big are the pieces?, Phys. Rev. Lett. 80, 5477.

    Article  ADS  Google Scholar 

  13. Antunes, N.D., Bettencourt, L.M.A. and Zurek, W.H. (1999) Vortex String Formation in a 3D U(l) Temperature Quench, Phys. Rev. Lett. 82 2824.

    Article  ADS  Google Scholar 

  14. Stephens, G.J., Calzetta, E.A., Hu, B.L. and Ramsey, S.A. (1999) Defect Formation and Critical Dynamics in the Early Universe, Phys.Rev. D 59 045009.

    Article  ADS  Google Scholar 

  15. Baüerle, C., et al. (1996) Laboratory simulation of cosmic-string formation in the early universe using superfluid He-3, Nature 382, 332.

    Article  ADS  Google Scholar 

  16. Ruutu, V.M.H. et al. (1996) Vortex formation in neutron-irradiated superfluid He-3 as an analog of cosmological defect formation, Nature 382, 334; Ruutu, V.M.H.et al. (1998) Defect Formation in Quench-Cooled Superfluid Phase Transition, Phys. Rev. Lett. 80, 1465.

    Article  ADS  Google Scholar 

  17. Dodd, M. E. (1998), et al., Non-Appearance of Vortices in Fast Mechanical Expansions of Liquid 4He Through the Lambda Transition, Phys. Rev. Lett., 81, 3703.

    Article  ADS  Google Scholar 

  18. Carmi, R., Polturak, E. (1999) Search for spontaneous nucleation of magnetic flux during rapid cooling of YBa2Cu3O7-δ films through Tc, To appear in Phys. Rev. B

    Google Scholar 

  19. Lythe G.D. (1998) Stochastic PDEs: domain formation in dynamic transitions, Anales de Fisica Vol. 455.

    Google Scholar 

  20. Dziarmaga, J. (1998) Density of kinks just after a quench in an underdamped system, Phys. Rev. Lett. 81, 1551.

    Article  ADS  Google Scholar 

  21. Zurek, W.H. (1996) Cosmological experiments in condensed matter, Phys. Rep. 276 177.

    Article  ADS  Google Scholar 

  22. Eltsov, V.B., Krusius, M., and Volovik, G.E. (1998) Superfluid 3He: a Laboratory Model System of quantum field theory, cond-mat/9809125.

    Google Scholar 

  23. Hohenberg, P.C. and Halperin, B.L. (1977) Theory of dynamic critical phenomena, Rev. Mod. Phys. 43, 435.

    Article  ADS  Google Scholar 

  24. Kajantie, K., Laine, M., Rummukainen, K. and Shaposhnikov, M. (1996) Is there a hot electroweak phase transition at m (H) greater than or similar to m (W)?, Phys. Rev. Lett. 77, 2887–2890.

    Article  ADS  Google Scholar 

  25. Bjorken, J.D. (1983) Highly relativistic nucleus-nucleus collisions: the central rapidity region, Phys. Rev.D 27, 140.

    Article  ADS  Google Scholar 

  26. Kibble, T.W.B. and G.E. Volovik (1997) On Phase Ordering Behind the Propagating Front of a Second-Order Transition, Pis’ma v ZhETF 65, 96.

    ADS  Google Scholar 

  27. Dziarmaga, J., Laguna, P. and Zurek, W.H. (1998) Symmetry Breaking with a Slant: Topological Defects after an Inhomogeneous Quench, cond-mat/9810396, to appear in Phys.Rev.Lett.

    Google Scholar 

  28. Kopnin, N. B. and Thuneberg, E.V., in preparation.

    Google Scholar 

  29. Chuang, I., Dürrer, R., Turok, N. and Yurke, B. (1991) Cosmology in the laboratory: defect dynamics in liquid-crystals, Science 251, 1336; Bowick, M.J., Chander, L., Schiff, E.A., and Srivastava, A.M. (1994) The cosmological Kibble mechanism in the laboratory: string formation in liquid-crystals, ibid. 263, 943.

    Article  ADS  Google Scholar 

  30. Yurke, B. private communication.

    Google Scholar 

  31. Hendry, P.C. et al. (1994) Generation of defects in superfluid He-4 as an analog of the formation of cosmic strings, Nature 368, 315.

    Article  ADS  Google Scholar 

  32. Karra G. and Rivers R. J. (1998), A reexamination of quenches in Helium 4 and Helium 3, Phys. Rev. Lett. 81, 3707.

    Article  ADS  Google Scholar 

  33. Antunes, N.D., Bettencourt, L.M.A. and Hindmarsh, M. (1998) The Thermodynamics of Cosmic String densities in U(1) Scalar Field Theory, Phys. Rev. Lett. 80 908.

    Article  ADS  Google Scholar 

  34. Antunes, N.D. and Bettencourt, L.M.A. (1998), The length distribution of vortex strings in U(l) equilibrium scalar field theory, Phys. Rev. Lett. 81 3083.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Bettencourt, L.M.A. (1995) Coarse-Grained Fluctuation Probabilities in the Standard Model and Subcritical Bubbles, Phys. Lett. B 356 297 (1995).

    Article  ADS  Google Scholar 

  36. Boyanovsky, D., de Vega, H. and Holman, R. (1999) Non-equilibrium phase transitions in condensed matter and cosmology: spinodal decomposition, condensates and defects, these proceedings.

    Google Scholar 

  37. Ketterle, W., Durfee, D.S., Stamper-Kurn, D.M. (1999) Making, probing and understanding Bose-Einstein condensates, cond-mat/9904034.

    Google Scholar 

  38. Anglin, J.R. and Zurek, W.H. (1998) Winding up by a quench: vortices in the wake of rapid Bose-Einstein condensation, quant-ph/9804035.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zurek, W.H., Bettencourt, L.M.A., Dziarmaga, J., Antunes, N.D. (2000). Shards of Broken Symmetry. In: Bunkov, Y.M., Godfrin, H. (eds) Topological Defects and the Non-Equilibrium Dynamics of Symmetry Breaking Phase Transitions. NATO Science Series, vol 549. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4106-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4106-2_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6205-0

  • Online ISBN: 978-94-011-4106-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics