Skip to main content

Part of the book series: NATO Science Series ((ASHT,volume 74))

  • 159 Accesses

Abstract

The term cell architecture refers to the fine structure of living cells, including their dynamically organized structures. New techniques and research strategies have been developed to characterize the structures and functions of the cytomatrix and their relationships in various cell types. The resulting in vitro and in vivo data have provided evidence that the cytoskeletal network is complex, characterized not only by tightly bound microtubule-associated proteins, but also by so-called cytosolic enzymes involved in different metabolic processes. The latter are not necessarily distributed homogeneously within the interstitial void, but transiently associate to the skeleton or form enzyme clusters (as described for example in Chapters 23-24 in this book). The heteroassociations of macromolecules are enhanced by crowding effects (Minton & Wilf, 1981), however, with a specificity, crucial from the physiological point of view, that is based on surface complementarity. These transient interactions are stabilized by weak interacting forces, and could be changed by changing ionic strength, pH or concentrations of endogenous effectors (e.g. metabolites and other proteins) or exogenous agents (e.g. drugs and pollutants). Consequently one would expect that the sensitivity of these complex structures towards effectors might depend on the organization state of macromolecules. A cellular network of structural proteins could function as an organizing centre for metabolic enzymes and could create appropriate conditions for formation of intermediates. Enzyme clusters of sequential enzymes of a metabolic pathway can provide kinetic advantages for metabolism such as channelling complexes. The physiological significance of the formation of these channelling complexes may vary from system to system, but in several cases their physiological relevance is not yet well understood (for more discussion, see Ovádi, 1991, and other articles in the same issue of the journal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Burke, J. R., Enghild, J. J., Martin, M. E., Jou Y.-S.et al.(1996) Huntington and DRPLA proteins selectively interact with the enzyme cAPDHNature Med.2, 347–350

    Article  PubMed  CAS  Google Scholar 

  • Cascante, M., Sorribas, A. & Canela, E. I. (1994) Enzyme—enzyme interactions and metabolite channelling: alternative mechanisms and their evolutionary significanceBiochem. J.298, 313-320

    PubMed  CAS  Google Scholar 

  • Christova, Y. T., Orosz, F. & Ovádi, J. (1996) Interaction between D-glyceraldehyde-3-phosphate dehydrogenase and calmodulinBiochem. Biophys. Res. Comm.228, 272–277

    Article  PubMed  CAS  Google Scholar 

  • Chuang, D.-M. & Ishitani, R. (1996) A role for GAPDH in apoptosis and neurodegenerationNature Med.2, 609–610

    Article  PubMed  CAS  Google Scholar 

  • Clegg, J. S. (1 991) The physiological significance of metabolite channeling: an idea whose time has comeJ. Theor. Biol.152, 63–65

    Article  PubMed  CAS  Google Scholar 

  • Dainiak, M. B., Izumrudov, V. A., Muronetz, V. I., Galaev, I. Y. & Mattiasson, B. (1998) Reactivation of glyceraldehyde-3-phosphate dehydrogenase using conjugates of monoclonal antibodies with polyelectrolyte complexes. An attempt to make an artificial chaperoneJ. Mol. Recognit. II25–27

    Article  Google Scholar 

  • Durrieu, C., Bernier-Valentin, F. & Rousset, B. (1987) Microtubules bind glyceraldehyde 3-phosphate dehydrogenase and modulate its enzyme activity and quaternary structureArch. Biochem. Biophys.252, 32–40

    Article  PubMed  CAS  Google Scholar 

  • Huitorel, P. & Pantaloni, D. (1985) Bundling of microtubules by glyceraldehyde-3- phosphate dehydrogenase and its modulations by ATPEur. J. Biochem.15o, 265–269

    Article  Google Scholar 

  • Keleti, T. & Welch, G. R. (1984) The evolution of enzyme kinetic powerBiochem. J.223,299-303

    PubMed  CAS  Google Scholar 

  • Lehotzky, A., Pálfia, Z., Kovács, J., Molnár, A. & Ovádi, J. (1994) Ligand-modulated cross-bridging of microtubules by phosphofructokinaseBiochem. Biophys. Res. Comm. 204585–591

    Article  PubMed  CAS  Google Scholar 

  • Minton, A. P. & Wilf, J. (1981) Effect of macromolecular crowding upon the structure and function of an enzyme: glyceraldehyde-3-phosphate dehydrogenaseBiochemistry20, 4821–4826

    Article  PubMed  CAS  Google Scholar 

  • Nagy, E. & Rigby, W. F. (1995) Glyceraldehyde-3-phosphate dehydrogenase selectively binds AT-rich RNA in the NAD(+)-binding region (Rossmann fold)J. Biol. Chem.270, 9515–5345

    Google Scholar 

  • Negrutskii, B. S. & Deutscher, M. P. (1991) Channeling of aminoacyl-tRNA for protein synthesisin vivo Proc. Natl. Acad. Sci. USA88, 4991-4995

    Article  PubMed  CAS  Google Scholar 

  • Orosz, F., Kovács, J., Lõw, P., Vértessy, B. G.et al.(1997) Interaction of a new bis-indol derivativeKAT-2with tubulin and its antimitotic activityBr. J. Pharmacol. 21947–954

    Article  Google Scholar 

  • Orosz, F., Santamaría, B., Ovádi, J. & Aragón, J. J. (1999a) Phosphofructokinase fromDictyostelium discoideum isa potent inhibitor of tubulin polymerizationBiochemistry38, 1857–1865

    Article  CAS  Google Scholar 

  • Orosz, F., Comin, B., Raïs, B., Puigjaner, J.et al.(1999b) New bis-indol dervatives: chemical, biochemical and cellular studiesBr. J. Cancer79, 1356–1365

    Article  CAS  Google Scholar 

  • Ovádi, J. (1991) Physiological significance of metabolic channellingJ. Theor. Biol. 1521–22 (with discussion by numerous authors in pp. 23–141)

    Article  PubMed  Google Scholar 

  • Perucho, M., Salas, J. & Salas, M. L. (1980) Study of the interaction of glyceraldehyde-3phosphate dehydrogenase with DNABiochim.Biophys. Acta. 606, 181–195

    Google Scholar 

  • Rabinovitz, M. (1991) Evidence for a role of phosphofructokinase and tRNA in the poly-ribosome disaggregation of amino acid deficiencyFEBS Lett.283, 270–272

    Article  PubMed  CAS  Google Scholar 

  • Rabinovitz, M. (1996) Uncharged tRNA-phosphofructokinase interaction in amino acid deficiencyAmino Acids IO99–108

    Google Scholar 

  • Sirover, M. A. (1996) Emerging new functions of the glycolytic protein, glyceraldehyde-3phosphate dehydrogenase, in mammalian cellsLife Sci.58, 2271–2277

    Article  PubMed  CAS  Google Scholar 

  • Soto, M. & Marigómez, I. (1995)Cell Biology in Environmental ToxicologyUniversity of the Basque Country, Bilbao

    Google Scholar 

  • Srere, P. A. & Ovádi, J. (1990) Enzyme-enzyme interactions and their metabolic roleFEBS Lett.268, 360–367

    Article  CAS  Google Scholar 

  • Vértessy, B. G., Kovács, J. & Ovádi, J. (1996) Specific characteristics of phosphofructokinasemicrotubule interactionFEBSLett. 179, 191–195

    Google Scholar 

  • Vértessy, B. G., Orosz, F., Kovács, J. & Ovádi, J. (1997a) Alternative binding of two sequential glycolytic enzymes to microtubules: molecular studies in phosphofructokinase/aldolase/ microtubule system, J.Biol. Chem. 27225542–25546

    Article  Google Scholar 

  • Vértessy, B. G., Kovács, J., Law, P., Lehotzky, A.et al.(1997b) Characterization of microtubule-phosphofructokinase complex: specific effects of MgATP and vinblastineBiochemistry36, 2051–2062

    Article  Google Scholar 

  • Vértessy, G. B., Bánkfalvi, D., Kovács, J., Low, P., et al. (1999) Pyruvate kinase as a micro-tubule-destabilizing factor in vitro, Biochem. Biophys. Res. Comm. 254, 430–435

    Google Scholar 

  • Wallin, M., Larsson, H. & Edström, A. (1977) Tubulin sulfhydryl groups and polymerizationin vivo:effects of di-and trivalent cationsExp. Cell Res.107, 219–225

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Liliom, K., Wágner, G., Orosz, F., Kovács, J., Ovádi, J. (2000). Implications of Cytoarchitectural Analysis. In: Cornish-Bowden, A., Cárdenas, M.L. (eds) Technological and Medical Implications of Metabolic Control Analysis. NATO Science Series, vol 74. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4072-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4072-0_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6189-3

  • Online ISBN: 978-94-011-4072-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics