Advertisement

Use of Metabolic Control Analysis to Design a New Strategy for Cancer Therapy

  • Marta Cascante
  • Begoña Comin
  • Joan Boren
  • Badr Raïs
  • Josep J. Centelles
  • Joaquim Puigjaner
  • Wai-Nang Paul Lee
  • Laszlo G. Boros
Chapter
Part of the NATO Science Series book series (ASHT, volume 74)

Abstract

The synthesis of nucleic acids is much more active in cancer than in normal cells, and is a process of the utmost importance in tumour proliferation. At present, conventional cancer treatment is directed only at the inhibition of synthesis of the purine and pyrimidine bases. Antimetabolites and alkylating agents are cancer chemotherapeutic agents that inhibit nucleic acid synthesis by preventing the synthesis of substrates for only half of the nucleic acid molecule, namely the purine and pyrimidine bases. It has been well known since the 193os that glucose metabolism is increased in malignant tissues (Warburg, 1930, 1956). The increase in glucose metabolism is accompanied not only by an increase of lactate production but also by an increase in pentose production for RNA and DNA synthesis (Eigenbrodt et al., 1985).However, the importance of the pentose phosphate pathway in tumours has been overlooked.

Keywords

Pentose Phosphate Pathway Thiamine Deficiency Nucleic Acid Synthesis Control Coefficient Metabolic Control Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basu, T. K. & Dickerson, J. W. (1976) The thiamin status of early cancer patients with par-ticular reference to those with breast and bronchial carcinomasOncology33, 250–252PubMedCrossRefGoogle Scholar
  2. Ben-Yoseph, O., Camp, D. M., Robinson, T. E. & Ross, B. D. (1995) Dynamic measurement of cerebral pentose phosphate pathway activity invivousing [1,6–13C26,6–2H2]glucose and microdialysisJ. Neurochem.64, 1336–1342PubMedCrossRefGoogle Scholar
  3. Boros, L. G., Puigjaner, J., Cascante, M., Lee, W. N. P.et al.(1997) Oxythiamine and dehydroepiandrosterone inhibit the nonoxidative synthesis of ribose and tumor cell proliferationCancer Res.57, 4242-4248PubMedGoogle Scholar
  4. Boros, L. G., Brandes, J. L., Lee, W. N., Cascante, M. etal.(1998) Thiamine supplementation to cancer patients: a double edged swordAnticancer Res.18, 595–602PubMedGoogle Scholar
  5. Cascante, M., Canela, E. I., Franco, R. (1990) Control analysis of systems having two steps catalysed by the same protein molecule in unbranched chainsEur. J. Biochem. 192369–371PubMedCrossRefGoogle Scholar
  6. Champe, P. C. & Harvey, R. A. (1994) Hexose monophosphate pathway. Oxidative reactions and nonoxidative reactions, pp. 110–113 in Biochemistry, 2nd edn., Lippincott, PhiladelphiaGoogle Scholar
  7. Cornish-Bowden, A. (1995) Kinetics of multi-enzyme systems, pp. 121–136 in Biotechnology (ed. Rehm, H.-J. & Reed, G.), 2nd edn., vol. 9, Verlag Chemie, WeinheimCrossRefGoogle Scholar
  8. Eigenbrodt, E., Fister, P. & Reinacher, M. (1985) New perspectives on carbohydrate metabolism in tumor cells, pp. 141–179 inRegulation of Carbohydrate Metabolism(ed. Beitner, R.), vol. 2, CRC Press, Boca Raton, FloridaGoogle Scholar
  9. Fell, D. (1997)Understanding the Control of MetabolismPortland Press, LondonGoogle Scholar
  10. Georgiannos, S. N., Weston, P. M. & Goode, A. W. (1993) Micronutrients in gastrointestinal cancerBr. J. Cancer68, 1195–1198PubMedCrossRefGoogle Scholar
  11. Groen, A. K. & Westerhoff, H. V. ((1990) Modern control theories: a consumers’ test, pp. l01–118 inControl of Metabolic Processes(ed. Cornish-Bowden, A. & Cárdenas, M. L.), Plenum Press, New YorkGoogle Scholar
  12. Heinrich, R. & Rapoport, T. A. (1974) A linear steady-state treatment of enzymatic chains: general properties, control and effector strengthEur. J. Biochem. 4289–95PubMedCrossRefGoogle Scholar
  13. Henquin, N., Havivi, J., Reshef, A., Barak, F. & Horn, Y. (1989) Nutritional monitoring and counselling for cancer patients during chemotherapyOncology46, 173–177PubMedCrossRefGoogle Scholar
  14. Hiatt, H. H. (1957) Studies of ribose metabolism. I. The pathway of nucleic ribose synthesis in human carcinoma cell in tissue cultureJ. Clin. Invest.36, 1408–1415PubMedCrossRefGoogle Scholar
  15. Horecker, B. L. & Mehler, A. H. (1955) Carbohydrate metabolismAnnu. Rev. Biochem. 24207–274PubMedCrossRefGoogle Scholar
  16. Kacser, H. & Burns, J. A. (1973) The control of fluxSymp. Soc. Exp. Biol.27, 65–104PubMedGoogle Scholar
  17. Katz, J. & Rognstad, R. (1967) The labeling of pentose phosphate from glucose-4C and estimation of the rates of transaldolase, transketolase, the contribution of the pentose cycle, and ribose phosphate synthesisBiochemistry6, 2227–2247PubMedCrossRefGoogle Scholar
  18. Krebs, H. A. (1957) Control of metabolic processesEndeavour16,125–132Google Scholar
  19. Lee, W. N., Boros, L. G., Puigjaner, J., Bassilian, S.et al.(1998) Mass isotopomer study of the nonoxidative pathways of the pentose cycle with [I,2–13C2]glucoseAm. J. Physiol.274, E843–E851PubMedGoogle Scholar
  20. Macallan, D. C., Fullerton, C. A., Neese, R. A., Haddock, K.et al.(1998) Measurement of cell proliferation by labeling of DNA with stable isotope-labeled glucose: studies invitroin animals, and in humansProc. Natl. Acad. Sci. USA5, 708–713CrossRefGoogle Scholar
  21. Mahan, K. L. & Arlin, M. (1992) Thiamine (vitamin BI), pp. 85–87 inFood Nutrition and Diet Therapy8th edn. (ed. Mahan, K. L. & Arlin, M.), Saunders, PhiladelphiaGoogle Scholar
  22. Ross, B. D., Kingsley, P. B. & Ben-Yoseph, O. (1994) Measurement of pentose phosphate pathway activity in a single incubation with [1,6–13C26,6–2H2]glucoseBiochem. J.302, 31–38PubMedGoogle Scholar
  23. Sabaté, L., Franco, R., Canela, E. I., Centelles, J. J. & Cascante, M. (1995) A model of the pentose phosphate pathway in rat liver cellsMol. Cell. Biochem.142, 9–17PubMedCrossRefGoogle Scholar
  24. Savageau, M. A. (1969a) Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactionsJ. Theor. Biol.25, 365–369CrossRefGoogle Scholar
  25. Savageau, M. A. (1969b) Biochemical systems analysis. n. The steady-state solutions for an n-pool system using a power law approximationJ. Theor. Biol.25, 370-379Google Scholar
  26. Seear, M., Lockitch, G., Jacobson, B., Quigley, G. & MacNab, A. (1992) Thiamine, riboflavin, and pyridoxine deficiencies in a population of critically ill childrenJ. Pediatrics121, 533–538CrossRefGoogle Scholar
  27. Small, J. R. & Kacser, H. (1993) Responses of metabolic systems to large changes in enzyme activities and effectors. 1. The linear treatment of unbranched chainsEur. J. Biochem.213, 613–624PubMedCrossRefGoogle Scholar
  28. Stephanopoulos, G. & Vallino, J. J. (1991) Network rigidity and metabolic engineering in metabolic overproductionScience252, 1675–1681PubMedCrossRefGoogle Scholar
  29. Voit, E. O. (1991)Canonical Nonlineal Modeling: S-System Approach to Understanding ComplexityVan Nostrand Reinhold, New YorkGoogle Scholar
  30. Warburg, O. (1930)The Metabolism of TumoursConstable, LondonGoogle Scholar
  31. Warburg, O. (1956) On the origin of cancer cellsScience123, 309–314PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Marta Cascante
    • 1
  • Begoña Comin
    • 1
  • Joan Boren
    • 1
  • Badr Raïs
    • 1
  • Josep J. Centelles
    • 1
  • Joaquim Puigjaner
    • 1
  • Wai-Nang Paul Lee
    • 2
  • Laszlo G. Boros
    • 2
  1. 1.Department of Biochemistry and Molecular Biology, IDIBAPSUniversity of Barcelona, c/Martí i Franquès 1BarcelonaSpain
  2. 2.Research and Education InstituteHarbor-UCLA Medical CenterCaliforniaUSA

Personalised recommendations