Fundamentals of Interfacial Properties

  • P. M. W. Cornelisse
  • C. J. Peters
Part of the NATO Science Series book series (NSSE, volume 366)


Already in the eighteenth century it was realized that the capillary effect of fluids must arise from attractive forces between the constituents of matter, the molecules. This realization led to the idea that examination of the capillary effects could tell something about the attractive forces and possibly also about the molecules. Also modem physicists are interested in the explanation of the capillary phenomena in terms of intermolecular forces. TMs chapter highlights some of the applications of the square gradient theory of van der Waals [1] in modeling the behaviour of fluids near interfaces. For a more extensive discussion of this theory we refer to Rowlinson and Widom [2].


Interfacial Tension Phase Behaviour Influence Parameter Gradient Theory Direct Correlation Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Van der Waals, J.D. (1894) Thermodynamische Theorie der Kapillaritaet unter Voraussetzung stetiger Dichte Aenderung, Z. phys. Chem. 13, 657–725.Google Scholar
  2. 2.
    Rowlinso., J.S. and Widom, B. (1989) Molecular Theory of Capillarity, International Series of Monographs on Chemistry 8th Vol., Oxford University Press, Oxford.Google Scholar
  3. 3.
    Cahn, J.W., and Milliard, J.E. (1958) Free energy of a nonuniform system. I. Interfacial tee energy, J. Chem. Phys. 28, 258–267.CrossRefGoogle Scholar
  4. 4.
    Yang, A.J.M., Flemming, P.D., and GIBBS, J.H. (1976) Molecular theory of surface tension, J. Chem. phys. 64, 3732–3747.Google Scholar
  5. 5.
    Yang, A.J.M., Flemming, P.D., and Gibbs, J.H. (1977) Theory of the influence of gravity on liquid-vapor Interfaces, J. Ckem. Phys. 67, 74–80.Google Scholar
  6. 6.
    Bongiorno, V., Scriven, L.E., and Davis, H.T. (1976) Molecular theory of fluid interfaces, J. Coll. Interf. Sci. 57, 462–475.CrossRefGoogle Scholar
  7. 7.
    Carey, B.S., Scriven, L.E. and Davis, H.T. (1978) On the gradient theories of fluid interfacial stress and structure, J. Chem. Phys. 69, 5040–5049.CrossRefGoogle Scholar
  8. 8.
    Carey, B.S., Scrivot, L.E. and Davis, H.T. (1978) Semiemperical theory of surface tensions of pure normal alkalies and alcohols, AJChE J. 24, 1076–1080.CrossRefGoogle Scholar
  9. 9.
    Peng, D.Y., and Robinson, D.B. (1976) A new two-constant equation of state, Ind. Eng. Chem. Fundam. 15, 59–64.CrossRefGoogle Scholar
  10. 10.
    Reid, R.C., Prausnitz, J.M., and Poling, B.E. (1988) The Properties of Gases and Liquids, 4th edition, McGraw-Hill Book Co., Singapore.Google Scholar
  11. 11.
    Cornelisse, P.M.W. (1997) The gradient theory applied, simultaneous modelling of interfacial tension and phase behaviour, Ph. D-thesis, Delft University of Thechnology, The Netherlands.Google Scholar
  12. 12.
    Van der Waals, J. D. (1893) Verhandel.Konink.Akad.Weten., Amsterdam (Sect. 1) 1, 8, 1–56.Google Scholar
  13. 13.
    Ebner, C., Saam, W.F., and Stroud, D. (1976) Density-functional theory of simple classical fluids. I. Surfaces, Phys.Rev.A 14, 2264–2273.CrossRefGoogle Scholar
  14. 14.
    Comelisse, P.M.W., Peters, C.J., and de Swaan Axons, J. (1997) On the fundamentals of the gradient theory of van der Waais, J. Chem. Phys. 106, 9820–9834.Google Scholar
  15. 15.
    Fisk, S., and Widom, B. (1969) Structure and free energy of the interface between fluid phases in equilibrium, J. Chem.phys, 50, 3219–3227.CrossRefGoogle Scholar
  16. 16.
    Gupta, M.K., and Robinson, R.L. Jr (1987) Application of gradient theory of inhomogeneous fluid to prediction of low interfacial tensions in CO2/hydrocarbon systems, SPE Res. Eng. 2, 528–530.Google Scholar
  17. 17.
    Vargaftik, N.B. (1975) Tables on Thermophysical Properties of Liquids and Gases, Hemisphere Publishing Corporation, John Wiley & Sons Inc., New York, USA.Google Scholar
  18. 18.
    Jasper, J.J. (1972) The surface tension of pure liquid compounds, J.Phys.Chem.Ref.Data 1, 841–1009.CrossRefGoogle Scholar
  19. 19.
    Donohue, M.D., and Vimalchand, P. (1988) The perturbed-hard-chain theory — Extensions and Applications, Fluid Phase Equilibria 40, 185–211.CrossRefGoogle Scholar
  20. 20.
    Ikonotnou, C.D., and Donohue, M.D. (1986) Thermodynamics of hydrogen-bonded molecules: the associated perturbed anisotropic chain theory, AJChE J. 32, 1716–1725.CrossRefGoogle Scholar
  21. 21.
    Econoraou, I.G., and Denohug M.D. (1991) Chemical, quasi-chemical and perturbation theories for associating fluids, AIChE J. 37, 1875–4894.CrossRefGoogle Scholar
  22. 22.
    Nagarajan, N. and Robinson, R.L. (1986) Equilibrium phase composition, phase densities, and interfacial tensions for CO2 + hydrocarbon systems. 2. CO2 + n-dodecane, J. Chem. Eng. Data 31, 168–171.CrossRefGoogle Scholar
  23. 23.
    Cornelisse, P.M.W., Peters, C.J., and de Swaan Arons, J. (1993) Application of the Peng-Robinson equation of state to calculate interfacial tensions and profite at vapor-liquid interfaces, Fluid Phase Equilibria 82, 119–129.Google Scholar
  24. 24.
    Sahimi, M., Davis, H.T., and Scriven, L.E. (1985) Thermodynamic modeling of phase and tension behavior of CO2/Hydrocarbon systems, SPE J. April, 235–254.Google Scholar
  25. 25.
    Sahimi M., and Taylor, B.N. (1991) Surface tension of binary liquid-vapor mixtures — A comparison of mean-field and scaling theories, J. Chem.Phys. 95, 6749–6761.CrossRefGoogle Scholar
  26. 26.
    Aiekseeva, M.V., and Moiseenko, M.F. (1982) Experimental study and calculation of liquid-vapor equilibria in the n-propanol/hexane/n-decanol system, Khim. Thermodin.Rastorov 5, 179–195.Google Scholar
  27. 27.
    Papaionmou, D., and Panayiotou, G. (1994) Surface tensions and relative adsorptions in hydrogen-bonded systems, J.Chem.Eng.Data 39, 457–462.CrossRefGoogle Scholar
  28. 28.
    Dulitskaya, K.A. (1945) Vapor pressure of binary systems, Zh.Ob.Shch.Khim. 15, 9–21.Google Scholar
  29. 29.
    Vázquez, G., Alvarez, E., and Navaza, J.M. (1995) Surface tension of alcohol + water from 20 to 50 °C, J.Chem.Eng.Data 40, 611–614.CrossRefGoogle Scholar
  30. 30.
    Udovcoko, V.V., and Fatkalina, L.G. (1952) Solubility in the system ethylalcohol-1,2-dichloroethane-water, zh.Fiz.Khim, 26, 1438.Google Scholar
  31. 31.
    Harrison, K.L., Johnston, K.P., and Sanchhen, I.C. (1996) Effect of surfactants on the interfacial tension between supwcritical carbon dioxide and polyethylene glycol, Langmuir, 12, 2637–2644.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • P. M. W. Cornelisse
    • 1
  • C. J. Peters
    • 1
  1. 1.Department of Chemical TechnologyDelft University of Technology Faculty of Applied SciencesDelftThe Netherlands

Personalised recommendations