Skip to main content

Phase Separation By Nucleation and Ly Spinodal Decomposition: Fundamentals

  • Chapter
Supercritical Fluids

Part of the book series: NATO Science Series ((NSSE,volume 366))

Abstract

One of the most promising applications of supercritical fluids is in materials processing [1]. Interest is driven by the possibility of making highly pure materials, with desirable and controllable properties, under mild operating conditions, and with minimal downstream processing. There are many routes to the formation of solid phases from a supercritical medium, but they all involve one of two fundamental mechanisms of phase separation, nucleation or spieodal decomposition. A clear understanding of these two basic processes is necessary for the engineering design of processes involving the formation of solid phases from a supercritical medium. This article reviews the fundamentals of nucleation and of spinodal decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eckert, C.A., Knutson, B.L., and Debenedetti, P.G. (1996) Supercritical fluids as solvents for chemical and materials processing, Nature 383, 313–318.

    Article  CAS  Google Scholar 

  2. Ehrenfest, P. (1933) Phasenpmwandlungee im lieblichen and erweiterten sinn? classifiziert nach den entsprechenden singularitaeten des thermodynamischen potentiates, Communications of the Kammerlingh Onnes Laboratory, Leiden Supp. 75b, 628.

    Google Scholar 

  3. Cleike, E.A., Sengers, J.V., Feirell, R.A., and Bhattacharjee, J.K. (1983) Pressure effects and ultrasonic attenuation in the binary liquid mixture 3-methylpentane and nitroethane near the critical point, Physical Review A 27, 2140–2151.

    Article  Google Scholar 

  4. Zhuang, W., and Kiran, E. (1998) Kinetics of pressure-induced phase separation (PIPS) from polymer solutions by time-resolved light scattering. Polyethylene + n-pentane, Polymer 39, 2903–2915.

    Article  CAS  Google Scholar 

  5. Debenedetti P.G. (1996) Metastable liquids. Concepts and Principles, Princeton University Press, Princeton.

    Google Scholar 

  6. Volmer, M., and Weber, A. (1926) Keimbildung in übersättigten gebilden, Z. Phys. Chem. 119, 277.

    CAS  Google Scholar 

  7. Parkas, L. (1927) Keimbildungsgeschwindigkeit in übersättigten dämpfen, Z. Phys. Chem. (Leipzig) A125, 236.

    Google Scholar 

  8. Becker, R., and Döring, W. (1935) Kinetische behandlueg der keimbildung in übersättigtee dampfen, Ann. Phys. (Leipzig) 24, 719.

    CAS  Google Scholar 

  9. Zeldovich, Ya. B. (1942) On the theory of new phase formation: cavitation, Zhur. Eksper. Theor. Fiz. 12, 525. Translated in Selected Works of Yakov Borisovich Zeidovich. Volume I Chemical Physics and Hydrodynamics. J.P. Ostriker, G.I. Barenblatt, and R.A. Sunayev, eds. Princeton University Press, 1992.

    Google Scholar 

  10. Frenkel, J. (1955) Kinetic Theory of Liquids, Dover, New York.

    Google Scholar 

  11. McDonald, J.E. (1962), Homogeneous nucleation of vapor condensation. I. Theraiodyeamic aspects, American Journal of Physics 30, 870.

    Article  CAS  Google Scholar 

  12. McDonald, J.E. (I963) Homogeneous nucleation of vapor condensation. II. Kinetic aspects, American Journal of Physics 31, 31.

    Google Scholar 

  13. Andres, R.P. (1965) Homogeneous nucleation from the vapor phase, Industrial and Engineering Chemistry 57, 24.

    Article  CAS  Google Scholar 

  14. Abraham, F.F. (1974) Homogeneous Nucleation Theory.The Pretransition Theory of Vapor Condensation, Academic Press, New York.

    Google Scholar 

  15. Friedlander, S.K. (1977) Smoke, Dust, and Haze: Fundamentals of Aerosol Behavior, Wiley, New York.

    Google Scholar 

  16. Springer, G.S. (1978) Homogeneous nucieation, Advances in Heat Transfer 14, 281.

    Article  CAS  Google Scholar 

  17. Seinfeld, J.H. (1986) Atmospheric Chemistry and Physics of Air Pollution., Ch. 9. Wiley, New York.

    Google Scholar 

  18. Lifshitz, E.M., and Pitaevskii, L.P. (1981) Physical Kinetics. Vol. 10 of Course of Theoretical Physics, by L.D. Landau and E.M. Lifshitz. Ch. 12. Pergamon, Oxford.

    Google Scholar 

  19. Narsimhan, G., and Ruckenstein, E. (1989) A new approach for the prediction of the rate of nucleation in liquids, J. Coll. Interf. Sci. 128, 549.

    Article  CAS  Google Scholar 

  20. Nowakowski, B., and Ruckenstein, E. (1990) Rate of nucleation in liquids for FCC and icosahedral clusters, J.Coll. Interf. Sci. 139, 500.

    Article  CAS  Google Scholar 

  21. Nowakowski, B., and Ruckenstein, E. (1991) A kinetic approach to the theory of nucleation in gases, J. Chem. Phys. 94, 1397.

    Article  CAS  Google Scholar 

  22. Nowakowski, B., and Ruckenstein, E. (1991) Homogeneous nucleation in gases: a three-dimensional Fokker-PIanck equation for evaporation from clusters, J. Chem. Phys. 94, 8487.

    Article  CAS  Google Scholar 

  23. Reckenstein, E., and Nowakowski, B. (1990) A kinetic theory of nucleation in liquids, J. Coll. Interf. Sci. 137, 583.

    Article  Google Scholar 

  24. Ruckenstein, E., and Nowakowski, B. (1991) A unidimensional Fokker-PIanck approximation in the treatment of nucleation in gases, Langmuir 7, 1537.

    Article  CAS  Google Scholar 

  25. Reiss, H. (1970) The treatment of droplike clusters by means of the classical phase integral in nucleation Tteory, J. Stat. Phys. 2, 83.

    Article  Google Scholar 

  26. Katz, J.L., and Blander, M. (1973) Condensation and boiling: corrections to homogeneous nucleation theory for nonideal gases, J. Coll. Interf. Sci. 42, 496.

    Article  CAS  Google Scholar 

  27. Gibbs, J.W. (1961) The Scientific Papers of J. Willard Gibbs, Ph.D., LLD. I. Thermodynamics, Dover, New York.

    Google Scholar 

  28. Debenedetti, P.G., and Reiss, H. (1998) Reversible work of formation of an embryo of a new phase wihin a uniform macroscopic mother phase, J. Chem. Phys. 108, 5498–5505.

    Article  CAS  Google Scholar 

  29. Reiss, H. (1950) The kinetics of phase transitions in binary systems, J. Chem. Phys. 18, 840.

    Article  CAS  Google Scholar 

  30. Stauffer, D. (1976) Kinetic theory of two-component (“heteromolecular”) nucleation and condensation, J. Aerosol. Sci. 7, 319.

    Article  CAS  Google Scholar 

  31. Wilemski, G. (1984) Composition of the critical nucleus in multicomponent vapor nucleation, J. Chem. Phys. 80, 1370.

    Article  CAS  Google Scholar 

  32. Wilemski, G. (1987) Revised classical binary nucleation theory for aqueous alcohol and acetone vapors, J. Phys. Chem. 91, 2492.

    Article  CAS  Google Scholar 

  33. Debenedetti, P.G. (1990) Homogeneous nucieation in supercritical fluids, AIChEJ 36, 1289.

    Article  CAS  Google Scholar 

  34. Kwauk, X., and Debenedetti, P.G. (1993) Mathematical modeling of aerosol formation by rapid expansion of supercritical solutions in a converging nozzle, J. Aerosol Sci. 24, 445.

    Article  CAS  Google Scholar 

  35. Lele, A.K., and Shine, A.D. (1994) Effects of RESS dynamics on polymer morphology, Ind. Eng. Chem. Res. 33, 14764485.

    Google Scholar 

  36. McGraw, R. (1981) A corresponding states correlation of the homogeneous nucleation thresholds of supercooled vapors, J. Chem. Phys. 75, 5514.

    Article  CAS  Google Scholar 

  37. Hung, C.-H., Krasnopoler, M.J., Katz, J.L. (1989) Condensation of a supersaturated vapor. VIII. The homogeneous nucleation of n-nonane, J. Chem. Phys. 90, 1856.

    Article  CAS  Google Scholar 

  38. Schmitt, J.L. (1981) Precision expansion cloud chamber for homogeneous nucleation studies, Rev. Sci. Instrum. 52, 1749.

    Article  CAS  Google Scholar 

  39. Miller, R.C., Anderson, R.J., Kassner, J.L., and Hagen, D.E. (I983) Homogeneous nucleation rate measurements for water over a wide range of temperature and nucleation rate, J. Chem. Phys. 78, 3204.

    Google Scholar 

  40. Wagner, P.E., and Strey, R. (1984) Measurements of homogeneous nucleation rates for n-nonane vapor using a two-piston expansion chamber, J. Chem. Phys. 80, 5266.

    Article  CAS  Google Scholar 

  41. Heist, R.H., and He, H. (1994) Review of vapor to liquid homogeneous nucleation experiments from 1968 to 1992, J. Phys. Chem. Ref. Data. 23, 781.

    Article  CAS  Google Scholar 

  42. Laaksonen, A., Talanquer, V., and Oxtoby, D.W. (1995) Nudeation: measurements, theory, and atmospheric applications, Ann. Rev. Phys. Chem. 46, 489.

    Article  CAS  Google Scholar 

  43. Adams, G.W., Schmitt, J.L., and Zalabsky, R.A. (1984) The homogeneous nucleation of nonane, J. Chem. Phys. 81, 5074.

    Article  CAS  Google Scholar 

  44. Viisanee, Y., Strey, R., and Reiss, H. (1993) Homogeneous nucleation rates for water, J. Chem. Phys. 99 4680–4692.

    Article  Google Scholar 

  45. Schmitt, J.L., Adams, G.W., and Zaiabsky, R.A. (1982) Homogeneous nucleation of ethanol, J. Chem. Phys. 77, 2089.

    Article  CAS  Google Scholar 

  46. Kacker, A., and Heist, R.H. (1985) Homogeneous nucleation rate measurements. I. Ethanol, n-propanol, and i-propanol, J. Chem. Phys. 82, 2734.

    Article  CAS  Google Scholar 

  47. Strey, R., Wagner, P.E., and Schmeling, T. (1986) Homogeneous nucleation rates for n-alcohol vapors measured in a two-piston expansion chamber, J. Chem. Phys. 84, 2325.

    Article  CAS  Google Scholar 

  48. Oxtoby, D.W., and Kashchiev, D. (1994) A general relation between the nucleation work and the size of the nucleus in multicomponent nucleation, J. Chem. Phys. 100, 7665–7671.

    Article  CAS  Google Scholar 

  49. Oxtoby, D.W., and Laaksonen, A. (1995) Some consequences of the nucleation theorem for binary fluids, J.Chem.Phys. 102, 6846–6850.

    Article  CAS  Google Scholar 

  50. Strey, R., and Viisanen, Y. (1993) Measurement of the molecular content of binary nuclei. Use of the nucleation rate surface for ethanol-hexanol, J. Chem. Phys. 99, 4693–4704.

    Article  CAS  Google Scholar 

  51. Viisanen, Y., Strey, R., Laaksonen, A., and Kulmala, M. (1994) Measurement of the molecular content of binary nuclei. II. Use of the nucleation rate surface for water-ethanol, J. Chem. Phys. 100, 6062–6072.

    Article  CAS  Google Scholar 

  52. Viisanen, Y., Wagner, P.E., and Strey, R. (1998) Measurement of the molecular content of binary nuclei. IV. Use of the nucleation rate surfaces for the n-nonane — n-alcohol series, J. Chem. Phys. 108, 4257–4266.

    Article  CAS  Google Scholar 

  53. Hruby, J., Viisanen, Y., and Strey, R. (1996) Homogeneous nocleation rates for n-pentanol in argon: determination of the critical cluster size, J. Chem. Phys. 104, 5181–5187.

    Article  CAS  Google Scholar 

  54. McGraw, R., and Laaksonen, A. (1996) Scaling properties of the critical nucleus in classical and molecular-based theories of vapor-liquid nuclealion, Physical Review Letters 76, 2754–2757.

    Article  CAS  Google Scholar 

  55. Oxtoby, D.W., and Evans, R. (1988) Nonclassical eecleation theory for the gas-liquid transition, J. Chem. Phys. 99, 1521.

    Google Scholar 

  56. Oxtoby, D. (1991) Crystallization of liquids: a density-functional approach. In Liquids, Freezing, and Glass Transition; J.P. Hansen, D. Levesque, and J. Zinn-Justin, eds. NATO Adv. Study Inst. Ch. 3. North-Holland, Amsterdam.

    Google Scholar 

  57. Zeng, X.C., and Oxtoby, D.W. (1991) Binary Homogeneous Nucleation Theory for the gas-liquid transition: a nonclassical approach, J. Chem. Phys. 95, 5940.

    Article  CAS  Google Scholar 

  58. Zeng, X.C., and Oxtoby, D.W. (1991) Gas-liquid nocleation in Lennard-jones fluids, J. Chem. Phys. 94, 4772.

    Article  Google Scholar 

  59. Harrowell, P., and Oxtoby, D.W. (1984) A molecular theory of crystal nucleation from the melt, J. Chem. Phys. 80, 1639.

    Article  CAS  Google Scholar 

  60. Oxtoby, D.W. (1992) Homogeneous nucleation: theory and experiment, J. Phys. Cond. Matt. 4, 7627.

    Article  Google Scholar 

  61. Talanqeer, V., and Oxtoby, D.W. (1993) Nucleation in dipolar fluids: Stockmayer fluids, J. Chem. Phys. 99, 4670.

    Article  Google Scholar 

  62. Talanquer, V., and Oxtoby, D.W. (1995) Nucleation of bubbles in binary fluids, J. Chem. Phys. 102, 2156.

    Article  CAS  Google Scholar 

  63. Reiss, H., Katz, J.L., and Cohen, E.R. (1968) Translation-rotation paradox in the theory of nucleation, J. Chem. Phys. 48, 5553.

    Article  CAS  Google Scholar 

  64. Reiss, H., Tabazadeh, A. and Talbot, J. (1990) Molecular theory of vapor phase nucleation: the physically consistent cluster, J. Chem. Phys. 92, 1266.

    Article  CAS  Google Scholar 

  65. Ellerby, H.M., Weakliem, C.L., and Reiss, H. (1991) Toward a molecular theory of vapor-phase nucleation. I. Identification of the average embryo, J. Chem. Phys. 95, 9209.

    Article  CAS  Google Scholar 

  66. Ellerby, H.M., and Reiss, H. (1992) Toward a molecular theory of vapor-phase nucleation.II. Fundamental treatment of the cluster distribution, J. Chem. Phys. 97, 5766.

    Article  CAS  Google Scholar 

  67. Weakliem, C.L., and Reiss, H. (1993) Toward a molecular theory of vapor-phase nucleation. III. Thermodynamic properties of argon clusters from Monte Carlo simulations and a modified liquid drop theory, J. Chem. Phys. 99, 5374.

    Article  CAS  Google Scholar 

  68. Weakliem, C.L., and Reiss, H. (I994) Toward a molecular theory of vapor-phase nucleation. IV. Rate theory using the modified liquid drop model”, J. Chem. Phys. 101, 2398.

    Google Scholar 

  69. Blander, M., and Katz, J.L. (1975) Bubble nucleation in liquids, AIChEJ. 21, 833.

    Article  CAS  Google Scholar 

  70. Avedisian, C.T. (1985) The homogeneous nucleation limite of liquids, J. Phys. Chem. Ref. Data 14, 695.

    Article  CAS  Google Scholar 

  71. Skripov, V.P. (1974) Metastable Liquids. Wiley, New York.

    Google Scholar 

  72. Skripov, V.P., Sinitsyn, E.N., Pavlov, E.A., Ermakov, G.V., Muratov, G.N., Bulaeov, N.V., and Baidakov, V.G. (1988) Thermophysical Properties of Liquids in the Metastabk (Superheated) State. Gordon and Breach, New York.

    Google Scholar 

  73. Kagan, Yu. (1960) The kinetics of boiling of a pure liquid, Russ. J. Phys. Chem. 34, 42.

    Google Scholar 

  74. Apfel, R.E. (1972) Water superheated to 279.5°C at atmospheric pressure, Nature 238, 63.

    CAS  Google Scholar 

  75. Holden, B.S., and Katz, J.L. (1978) The homogeneous nucleation of bubbles in superheated binary liquid mixtures, AIChEJ. 24, 260.

    Article  CAS  Google Scholar 

  76. Dixon, D.J., and Johnston, K.P. (1993) Formation of microporous polymer fibers and oriented fibrils by precipitattion with a compressed fluid antisolvent, J. Appl. Polym. Sci. 50, 1929–1942.

    Article  CAS  Google Scholar 

  77. Weidner, E., Steiner, R., and Knez, Z. (1996) Powder generation from polyethyleneglycols with compressible fluids. In High Pressure Chemical Engineering, R. von Rohr and C. Trepp, eds., Process Technology Proceedings, 12, 223–228, Elsevier, Amsterdam.

    Google Scholar 

  78. Turnbull, D., and Fisher, J.C. (1949) Rate of nucleation in condensed systems, J. Chem. Phys. 17, 71.

    Article  CAS  Google Scholar 

  79. Buckle, E.R. (1961) Studies on the freezing of pure liquids. II. The kinetics of homogeneous nucleation in supercooled liquids, Proc. Roy. Soc. A 261, 189.

    Article  CAS  Google Scholar 

  80. Jackson, K.A. (1965) Nucleation from the melt, Ind. Eng. Chem. 57, 28.

    Article  CAS  Google Scholar 

  81. Turnbull, D. (1969) Under what conditions can a glass be formed? Contemp. Phys. 10, 473.

    Article  CAS  Google Scholar 

  82. Woodruff, D.P. (1973) The Solid-Liquid Interface, Cambridge University Press, Cambridge.

    Google Scholar 

  83. Oxtoby, D.W. (1988) Nucleation of crystals from the melt, Adv.Chem.Phys. 70, 263.

    Article  Google Scholar 

  84. Tiller, W.A. (1991) The Science of Crystallization: Microscopic Interfacial Phenomena, Cambridge University Press, Cambridge.

    Google Scholar 

  85. Myersoe, A.S., and Izmailov, A.F. (1993) The structure of supersaturated solutions. In Handbook of Crystal Growth, D.T.J. Hurtle, ed., Vol. 1, chap. 5, Elsevier, Amsterdam.

    Google Scholar 

  86. Franks, F. (1982) The properties of aqueous solutions at subzero temperature. In Water: a Comprehensive Treatise, F. Franks, ed., Vol. 7, chap. 3, Plenum, New York.

    Google Scholar 

  87. Perepezko, J.H. (1984) Nucleation in undercooled liquids, Mater. Sei. and Eng. 65, 125.

    Article  CAS  Google Scholar 

  88. Cwilong, B.M. (1945) Sublimation in a Wilson chamber, Nature, 155, 361.

    Article  Google Scholar 

  89. Cwilong, B.M. (1947) Sublimation in a Wilson chamber, Proc. Roy.Soc. A 190, 137.

    Article  CAS  Google Scholar 

  90. Thomas, D.G., and Staveley, L.A.K. A study of the supercooling of drops of some molecular liquids, J.Chem. Soc. 4569.

    Google Scholar 

  91. Coriell, S.R., Hardy, S.C., and Sekerka, R.F. (1971) A nonlinear analysis of experiments on the morphological stability of ice crystals freezing from aqueous solutions, J. Cryst. Growth 11, 53.

    Article  CAS  Google Scholar 

  92. Rasmussen, D.H., and MacKenzie, A.P. (1972). In Water Structure and the Water Polymer Interface, H.H.G. Jellinek, ed., 126445. Plenum, New York.

    Google Scholar 

  93. Rasmussen, D.H., MacKenzie, A.P., Angell, C.A. and Tucker, J.C. (1973) Anomalous heat capacities of supercooled water and heavy water, Science 181, 342.

    Article  CAS  Google Scholar 

  94. Angell, C.A. (1982) Supercooled water. In Water: a Comprehensive Treatise, F. Franks, ed. Vol 7, chap. 1, Plenum, New York.

    Google Scholar 

  95. Oxtoby, D. (I984) Nucleation of crystals from the melt. In Dynamic Aspects of Structural Change in Liquids and Glasses: C.A. Angell and M. Goldstein, eds. Ann. N.Y. Acad. Sci. 484, 26.

    Google Scholar 

  96. Ramakrishnan, T.V., and Yussouf, M. (1979) First-principles order parameter theory of freezing, Phys. Rev. B. 19, 2775.

    Article  CAS  Google Scholar 

  97. Haymet, A.D.J., and Oxtoby, D.W. (1981) A molecular theory of the solid-liquid interface, J. Chem. Phys. 74, 2559.

    Article  Google Scholar 

  98. Oxtoby, D.W., and Haymet, A.D.J. (1982) A molecular theory of the solid-liquid interface. II. Study of bcc crystal-melt interfaces, J. Chem. Phys. 76, 6262.

    Article  CAS  Google Scholar 

  99. Cahe, J.W., and Milliard, J.E. (1958) Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys. 28, 258.

    Article  Google Scholar 

  100. Cahn, J.W., and Milliard, J.E. (1959) Free energy of a nonuniform system. III. Nucleation in a twocomponent incompressible fluid, J. Chem. Phys. 31, 688.

    Article  CAS  Google Scholar 

  101. Cahn, J.W., and Milliard, J.E. (1971) Spinodal decomposition: a reprise Acta Metall. 19, 151.

    Article  CAS  Google Scholar 

  102. Cahn, J. W. (1959) Free energy of a nonuniform system. II. Thermodynamic basis”, J. Chem. Phys. 30, 1121.

    Article  CAS  Google Scholar 

  103. Cahn, J.W. (1961) On spinodal decomposition, Acta Metall. 9, 795.

    Article  CAS  Google Scholar 

  104. Cahn, J.W. (1962) On spinodal decomposition in cubic crystals, Acta Metall. 10, 179.

    Article  CAS  Google Scholar 

  105. Cahn, J.W. (1965) Phase separation by spinodal decomposition in isotropic systems, J. Chem. Phys. 42, 93.

    Article  CAS  Google Scholar 

  106. van der Waals, J.D. (1893) Thermodynamische theorie de capillariteit in de onderstelling von continue dichtheidsverandering, Verhand. Konink. Akad. Wetensch. Amsterdam. Sect. I Deel I, 2.

    Google Scholar 

  107. Rowlinson, J.S. (1979) Translation of J.D. van der Waats, “The Thermodyeamic Theory of Capillarity under the Hypothesis of Continuous Variation in Density”, J. Stat. Phys. 20, 197.

    Article  Google Scholar 

  108. Abraham, F.F. (1975) A theory for the thermodynamics and structure of nonueiform systems, with application to the liquid-vapor interface and spinodal decomposition, J. Chem. Phys. 63, 157.

    Article  CAS  Google Scholar 

  109. Abraham, F.F. (1979) On the thermodynamics, structure, and phase stability of the nonueiform fluid state, Phys. Rep. 53, 95.

    Article  Google Scholar 

  110. Davis, H.T., and Scriveo, L.E. (1982) Stress and structure in fluid interfaces, Adv. Chem.Phys. 59 357.

    Article  Google Scholar 

  111. McCoy, B.F., and Davis, H.T. (1979) Free-energy of iehomogeneous fluids, Phys. Rev. A 20 1201.

    Article  CAS  Google Scholar 

  112. Bongiomo, V. Scriven, L.E., and Davis, H.T. (1976) Molecular theory of fluid interfaces, J. Colloid. Interf. Sci. 57, 462.

    Article  Google Scholar 

  113. Rowlinson, J.S., and Widom, B. (1982) Molecular Theory of Capillarity. Oxford University Press, Oxford.

    Google Scholar 

  114. Griffiths, R.B., and Wheeler, J.C. (1970) Critical points in multicomponent systems, Phys. Rev. A. 2, 1047.

    Article  Google Scholar 

  115. Fisk, S., and Widora, B. (1969) Structure and free energy of the interface between fluid phases in equilibrium near the critical point, J. Chem. Phys. 50, 3219.

    Article  CAS  Google Scholar 

  116. Mruzik, M.R., Abraham, F.F., and Pound, G.M. (1978) Phase separation in fluid systems by spinodal decomposition. IL A molecular dynamics computer simulation, J. Chem. Phys. 69, 3462.

    Article  CAS  Google Scholar 

  117. Abraham, F.F., Koch, S.W., and Desai, R.C. (1982) Computer-simulation of an unstable twodimensional fluid: time-dependent morphology and scaling, Phys. Rev. Lett. 49, 923.

    Article  CAS  Google Scholar 

  118. Koch, S.W., Desai, R.C., and Abraham, F.F. (1983) Dynamics of phase separation in two-dimensional fluids: spinodal decomposition, Phys. Rev. A. 27, 2152.

    Article  CAS  Google Scholar 

  119. Huang, J.S., Goldberg, W.I., and Bjerkaas, A.W. (1974) Study of phase separation in a critical binary liquid mixture: spinodal decomposition, Phys. Rev. Lett. 32, 921.

    Article  CAS  Google Scholar 

  120. Chou, Y.C., and Goldburg, W.I. (1979) Phase separation and coalescence in critically quenched isobutyric acid-water and 2,6-Iutidine-water mixtures, Phys. Rev. A 20, 2105.

    Article  CAS  Google Scholar 

  121. Chou, Y.C., and Goldburg, W.I. (1981) Angular distribution of light scattered from critically quenched mixtures, Phys. Rev. A 23, 858.

    Article  CAS  Google Scholar 

  122. Wong, N.-C., and Knobler, C.M. (1978) Light scattering study of phase separation in isobutyric acid + water mixtures, J. Chem. Phys. 69, 725.

    Article  CAS  Google Scholar 

  123. Wong, N.-C., and Knobler, C.M. (1981) Light-scattering studies of phase separation in isobutyric acid + water mixtures: hydrodynamic effects, Phys. Rev. A 24, 3205.

    Article  CAS  Google Scholar 

  124. Knobler, C.M., and N.-C. Wong (1981) Light scattering studies of phase separation in isobutyric acid and water mixtures. 2. Test of scaling, J. Phys. Chem. 85, 1972.

    Article  CAS  Google Scholar 

  125. Guenoon, P., Beysens, D., and Robert, M. (1990) Dynamics of wetting and phase separation, Phys. Rev. Lett. 65, 2406.

    Article  Google Scholar 

  126. Chan, C.K., Perrot, F., and Beysens, D. (1991) Experimental study and model simulation of spinodal decomposition in a binary mixture under shear, Phys. Rev. A 43, 1826.

    Article  CAS  Google Scholar 

  127. Cummieg, A., Wiltzius, P., Bates, F.S., and Rosedale, J.H. (1992) Light scattering experiments on phase separation dynamics in binary fluid mixtures, Phys. Rev. A 45, 885.

    Article  Google Scholar 

  128. Katzen, D., and Reich, S. (1993) Image analysis of phase separation in polymer blends, Europhys. Lett 21, 55.

    Article  CAS  Google Scholar 

  129. Beysens, D., Goenoun, P., Sibille, P., and Kumar, A. (1994) Dimple and nose coalescences in phaseseparation processes, Phys. Rev. E 50, 1299.

    Article  CAS  Google Scholar 

  130. Lifshitz, E.M., and Slyozov, V.V. (1961) The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids. 19, 35.

    Article  Google Scholar 

  131. Binder, K., and Stauffer, D. (1974) Theory for the slowing down of the relaxation and spinodal decomposition of binary mixtures, Phys. Rev. Lett. 33, 1006.

    Article  Google Scholar 

  132. Binder, K. (1977) Theory of the dynamics of 'clusters'. II. Critical diffusion in binary systems and the kinetics of phase separation, Phys. Rev. B 15, 4425.

    Article  CAS  Google Scholar 

  133. Siggia, E.D. (1979) Late stages of spinodal decomposition in binary mixtures, Phys. Rev. A 20, 595.

    Article  CAS  Google Scholar 

  134. Cook, H.E. (1970) Brownian motion in spinodal decomposition, Acta Metall. 18, 297.

    Article  CAS  Google Scholar 

  135. Langer, J.S. (1971) Theory of spinodal decomposition in alloys, Ann. Phys. 65, 53.

    Article  Google Scholar 

  136. Langer, J.S. (1973) Statistical methods in the theory of spinodal decomposition, Acta Metall. 21, 1649.

    Article  CAS  Google Scholar 

  137. Langer, J.S., Bar-on, M., and Miller, H.D. (1975) New computational method in the theory of spinodal decomposition, Phys. Rev. A. 11, 1417.

    Google Scholar 

  138. Binder, K., Billotet, C., and Mirold, P. (1978) On the theory of spinodal decomposition in solid and liquid binary Mixtures, Z. Physik B. 30, 183.

    Article  CAS  Google Scholar 

  139. Koch, S.W., Desai, R.C., and Abraham, F.F. (1982) Spinodal decomposition of a one-component fluid: a hydrodynamic fluctuation theory and comparison with computer simulation, Phys. Rev. A. 26, 1015.

    Article  CAS  Google Scholar 

  140. Bortz, A.B., Kalos, M.H., Lebowitz, J.L., and Zandejas, M.A. (1974) Time evolution of a quenched binary alloy: computer simulation of a two-dimensional model system, Phys. Rev. B. 10, 535.

    Article  CAS  Google Scholar 

  141. Marro, J., Bortz, A.B., Kalos, M.H., and Lebowitz, J.L. (1975) Time evolution of a quenched binary alloy. II. Computer simulation of a three-dimensional model system, Phys. Rev. B. 12, 2000.

    Google Scholar 

  142. Rao, M., Kalos, M.H., Lebowitz, J.L., and Marro, J. (1976) Time evolution of a quenched binary alloy. III. Computer simulation of a two-dimensional model system, Phys. Rev. B. 13, 4328.

    Article  CAS  Google Scholar 

  143. Sur, A., Lebowitz, J.L., Marro, J., and Kalos, M.H. (1977) Time evolution of a quenched binary alloy. IV. Computer simulation of a three-dimensional model system, Phys. Rev, B. 15, 3014.

    Article  CAS  Google Scholar 

  144. Heerman, D.W. (1984) Test of the validity of the classical theory of spinodal decomposition, Phys. Rev.Utt. 52, 1126.

    Google Scholar 

  145. Kiran, E., and Zhuang, W. (1997) Miscibility and phase separation of polymere in near- and supercritical fluids. In Supercritical Fluids, Extraction and Pollution Prevention, M.A. Abraham and A.K. Sunol, eds., ACS Symp. Ser. 670, 2–36.

    Google Scholar 

  146. Xiong, Y., and Kiran, E. (1998) High-pressure scattering apparatus to study pressure-induced phase separation in polymer solutions, Rev. Sci. Instrum. 69, 1463–1471.

    Article  CAS  Google Scholar 

  147. Mawson, S., Kanakia, S., and Johnston, K.P. (1997) Metastable polymer blends by precipitation with a compressed fluid antisolvent, Polymer 38, 2957–2967.

    Article  CAS  Google Scholar 

  148. Dixon, D.J., Luna-Bárcenas, G., and Johnston, K.P. (1994). Microcellular microspheres and microballoons by precipitation with a vapour-liquid compressed fluid antisolvent, Polymer 35, 3998–4005.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Debenedetti, P.G. (2000). Phase Separation By Nucleation and Ly Spinodal Decomposition: Fundamentals. In: Kiran, E., Debenedetti, P.G., Peters, C.J. (eds) Supercritical Fluids. NATO Science Series, vol 366. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3929-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3929-8_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6236-4

  • Online ISBN: 978-94-011-3929-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics