Phase Separation By Nucleation and Ly Spinodal Decomposition: Fundamentals

  • P. G. Debenedetti
Part of the NATO Science Series book series (NSSE, volume 366)


One of the most promising applications of supercritical fluids is in materials processing [1]. Interest is driven by the possibility of making highly pure materials, with desirable and controllable properties, under mild operating conditions, and with minimal downstream processing. There are many routes to the formation of solid phases from a supercritical medium, but they all involve one of two fundamental mechanisms of phase separation, nucleation or spieodal decomposition. A clear understanding of these two basic processes is necessary for the engineering design of processes involving the formation of solid phases from a supercritical medium. This article reviews the fundamentals of nucleation and of spinodal decomposition.


Nucleation Rate Supercritical Fluid Homogeneous Nucleation Spinodal Decomposition Critical Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eckert, C.A., Knutson, B.L., and Debenedetti, P.G. (1996) Supercritical fluids as solvents for chemical and materials processing, Nature 383, 313–318.CrossRefGoogle Scholar
  2. 2.
    Ehrenfest, P. (1933) Phasenpmwandlungee im lieblichen and erweiterten sinn? classifiziert nach den entsprechenden singularitaeten des thermodynamischen potentiates, Communications of the Kammerlingh Onnes Laboratory, Leiden Supp. 75b, 628.Google Scholar
  3. 3.
    Cleike, E.A., Sengers, J.V., Feirell, R.A., and Bhattacharjee, J.K. (1983) Pressure effects and ultrasonic attenuation in the binary liquid mixture 3-methylpentane and nitroethane near the critical point, Physical Review A 27, 2140–2151.CrossRefGoogle Scholar
  4. 4.
    Zhuang, W., and Kiran, E. (1998) Kinetics of pressure-induced phase separation (PIPS) from polymer solutions by time-resolved light scattering. Polyethylene + n-pentane, Polymer 39, 2903–2915.CrossRefGoogle Scholar
  5. 5.
    Debenedetti P.G. (1996) Metastable liquids. Concepts and Principles, Princeton University Press, Princeton.Google Scholar
  6. 6.
    Volmer, M., and Weber, A. (1926) Keimbildung in übersättigten gebilden, Z. Phys. Chem. 119, 277.Google Scholar
  7. 7.
    Parkas, L. (1927) Keimbildungsgeschwindigkeit in übersättigten dämpfen, Z. Phys. Chem. (Leipzig) A125, 236.Google Scholar
  8. 8.
    Becker, R., and Döring, W. (1935) Kinetische behandlueg der keimbildung in übersättigtee dampfen, Ann. Phys. (Leipzig) 24, 719.Google Scholar
  9. 9.
    Zeldovich, Ya. B. (1942) On the theory of new phase formation: cavitation, Zhur. Eksper. Theor. Fiz. 12, 525. Translated in Selected Works of Yakov Borisovich Zeidovich. Volume I Chemical Physics and Hydrodynamics. J.P. Ostriker, G.I. Barenblatt, and R.A. Sunayev, eds. Princeton University Press, 1992.Google Scholar
  10. 10.
    Frenkel, J. (1955) Kinetic Theory of Liquids, Dover, New York.Google Scholar
  11. 11.
    McDonald, J.E. (1962), Homogeneous nucleation of vapor condensation. I. Theraiodyeamic aspects, American Journal of Physics 30, 870.CrossRefGoogle Scholar
  12. 12.
    McDonald, J.E. (I963) Homogeneous nucleation of vapor condensation. II. Kinetic aspects, American Journal of Physics 31, 31.Google Scholar
  13. 13.
    Andres, R.P. (1965) Homogeneous nucleation from the vapor phase, Industrial and Engineering Chemistry 57, 24.CrossRefGoogle Scholar
  14. 14.
    Abraham, F.F. (1974) Homogeneous Nucleation Theory.The Pretransition Theory of Vapor Condensation, Academic Press, New York.Google Scholar
  15. 15.
    Friedlander, S.K. (1977) Smoke, Dust, and Haze: Fundamentals of Aerosol Behavior, Wiley, New York.Google Scholar
  16. 16.
    Springer, G.S. (1978) Homogeneous nucieation, Advances in Heat Transfer 14, 281.CrossRefGoogle Scholar
  17. 17.
    Seinfeld, J.H. (1986) Atmospheric Chemistry and Physics of Air Pollution., Ch. 9. Wiley, New York.Google Scholar
  18. 18.
    Lifshitz, E.M., and Pitaevskii, L.P. (1981) Physical Kinetics. Vol. 10 of Course of Theoretical Physics, by L.D. Landau and E.M. Lifshitz. Ch. 12. Pergamon, Oxford.Google Scholar
  19. 19.
    Narsimhan, G., and Ruckenstein, E. (1989) A new approach for the prediction of the rate of nucleation in liquids, J. Coll. Interf. Sci. 128, 549.CrossRefGoogle Scholar
  20. 20.
    Nowakowski, B., and Ruckenstein, E. (1990) Rate of nucleation in liquids for FCC and icosahedral clusters, J.Coll. Interf. Sci. 139, 500.CrossRefGoogle Scholar
  21. 21.
    Nowakowski, B., and Ruckenstein, E. (1991) A kinetic approach to the theory of nucleation in gases, J. Chem. Phys. 94, 1397.CrossRefGoogle Scholar
  22. 22.
    Nowakowski, B., and Ruckenstein, E. (1991) Homogeneous nucleation in gases: a three-dimensional Fokker-PIanck equation for evaporation from clusters, J. Chem. Phys. 94, 8487.CrossRefGoogle Scholar
  23. 23.
    Reckenstein, E., and Nowakowski, B. (1990) A kinetic theory of nucleation in liquids, J. Coll. Interf. Sci. 137, 583.CrossRefGoogle Scholar
  24. 24.
    Ruckenstein, E., and Nowakowski, B. (1991) A unidimensional Fokker-PIanck approximation in the treatment of nucleation in gases, Langmuir 7, 1537.CrossRefGoogle Scholar
  25. 25.
    Reiss, H. (1970) The treatment of droplike clusters by means of the classical phase integral in nucleation Tteory, J. Stat. Phys. 2, 83.CrossRefGoogle Scholar
  26. 26.
    Katz, J.L., and Blander, M. (1973) Condensation and boiling: corrections to homogeneous nucleation theory for nonideal gases, J. Coll. Interf. Sci. 42, 496.CrossRefGoogle Scholar
  27. 27.
    Gibbs, J.W. (1961) The Scientific Papers of J. Willard Gibbs, Ph.D., LLD. I. Thermodynamics, Dover, New York.Google Scholar
  28. 28.
    Debenedetti, P.G., and Reiss, H. (1998) Reversible work of formation of an embryo of a new phase wihin a uniform macroscopic mother phase, J. Chem. Phys. 108, 5498–5505.CrossRefGoogle Scholar
  29. 29.
    Reiss, H. (1950) The kinetics of phase transitions in binary systems, J. Chem. Phys. 18, 840.CrossRefGoogle Scholar
  30. 30.
    Stauffer, D. (1976) Kinetic theory of two-component (“heteromolecular”) nucleation and condensation, J. Aerosol. Sci. 7, 319.CrossRefGoogle Scholar
  31. 31.
    Wilemski, G. (1984) Composition of the critical nucleus in multicomponent vapor nucleation, J. Chem. Phys. 80, 1370.CrossRefGoogle Scholar
  32. 32.
    Wilemski, G. (1987) Revised classical binary nucleation theory for aqueous alcohol and acetone vapors, J. Phys. Chem. 91, 2492.CrossRefGoogle Scholar
  33. 33.
    Debenedetti, P.G. (1990) Homogeneous nucieation in supercritical fluids, AIChEJ 36, 1289.CrossRefGoogle Scholar
  34. 34.
    Kwauk, X., and Debenedetti, P.G. (1993) Mathematical modeling of aerosol formation by rapid expansion of supercritical solutions in a converging nozzle, J. Aerosol Sci. 24, 445.CrossRefGoogle Scholar
  35. 35.
    Lele, A.K., and Shine, A.D. (1994) Effects of RESS dynamics on polymer morphology, Ind. Eng. Chem. Res. 33, 14764485.Google Scholar
  36. 36.
    McGraw, R. (1981) A corresponding states correlation of the homogeneous nucleation thresholds of supercooled vapors, J. Chem. Phys. 75, 5514.CrossRefGoogle Scholar
  37. 37.
    Hung, C.-H., Krasnopoler, M.J., Katz, J.L. (1989) Condensation of a supersaturated vapor. VIII. The homogeneous nucleation of n-nonane, J. Chem. Phys. 90, 1856.CrossRefGoogle Scholar
  38. 38.
    Schmitt, J.L. (1981) Precision expansion cloud chamber for homogeneous nucleation studies, Rev. Sci. Instrum. 52, 1749.CrossRefGoogle Scholar
  39. 39.
    Miller, R.C., Anderson, R.J., Kassner, J.L., and Hagen, D.E. (I983) Homogeneous nucleation rate measurements for water over a wide range of temperature and nucleation rate, J. Chem. Phys. 78, 3204.Google Scholar
  40. 40.
    Wagner, P.E., and Strey, R. (1984) Measurements of homogeneous nucleation rates for n-nonane vapor using a two-piston expansion chamber, J. Chem. Phys. 80, 5266.CrossRefGoogle Scholar
  41. 41.
    Heist, R.H., and He, H. (1994) Review of vapor to liquid homogeneous nucleation experiments from 1968 to 1992, J. Phys. Chem. Ref. Data. 23, 781.CrossRefGoogle Scholar
  42. 42.
    Laaksonen, A., Talanquer, V., and Oxtoby, D.W. (1995) Nudeation: measurements, theory, and atmospheric applications, Ann. Rev. Phys. Chem. 46, 489.CrossRefGoogle Scholar
  43. 43.
    Adams, G.W., Schmitt, J.L., and Zalabsky, R.A. (1984) The homogeneous nucleation of nonane, J. Chem. Phys. 81, 5074.CrossRefGoogle Scholar
  44. 44.
    Viisanee, Y., Strey, R., and Reiss, H. (1993) Homogeneous nucleation rates for water, J. Chem. Phys. 99 4680–4692.CrossRefGoogle Scholar
  45. 45.
    Schmitt, J.L., Adams, G.W., and Zaiabsky, R.A. (1982) Homogeneous nucleation of ethanol, J. Chem. Phys. 77, 2089.CrossRefGoogle Scholar
  46. 46.
    Kacker, A., and Heist, R.H. (1985) Homogeneous nucleation rate measurements. I. Ethanol, n-propanol, and i-propanol, J. Chem. Phys. 82, 2734.CrossRefGoogle Scholar
  47. 47.
    Strey, R., Wagner, P.E., and Schmeling, T. (1986) Homogeneous nucleation rates for n-alcohol vapors measured in a two-piston expansion chamber, J. Chem. Phys. 84, 2325.CrossRefGoogle Scholar
  48. 48.
    Oxtoby, D.W., and Kashchiev, D. (1994) A general relation between the nucleation work and the size of the nucleus in multicomponent nucleation, J. Chem. Phys. 100, 7665–7671.CrossRefGoogle Scholar
  49. 49.
    Oxtoby, D.W., and Laaksonen, A. (1995) Some consequences of the nucleation theorem for binary fluids, J.Chem.Phys. 102, 6846–6850.CrossRefGoogle Scholar
  50. 50.
    Strey, R., and Viisanen, Y. (1993) Measurement of the molecular content of binary nuclei. Use of the nucleation rate surface for ethanol-hexanol, J. Chem. Phys. 99, 4693–4704.CrossRefGoogle Scholar
  51. 51.
    Viisanen, Y., Strey, R., Laaksonen, A., and Kulmala, M. (1994) Measurement of the molecular content of binary nuclei. II. Use of the nucleation rate surface for water-ethanol, J. Chem. Phys. 100, 6062–6072.CrossRefGoogle Scholar
  52. 52.
    Viisanen, Y., Wagner, P.E., and Strey, R. (1998) Measurement of the molecular content of binary nuclei. IV. Use of the nucleation rate surfaces for the n-nonane — n-alcohol series, J. Chem. Phys. 108, 4257–4266.CrossRefGoogle Scholar
  53. 53.
    Hruby, J., Viisanen, Y., and Strey, R. (1996) Homogeneous nocleation rates for n-pentanol in argon: determination of the critical cluster size, J. Chem. Phys. 104, 5181–5187.CrossRefGoogle Scholar
  54. 54.
    McGraw, R., and Laaksonen, A. (1996) Scaling properties of the critical nucleus in classical and molecular-based theories of vapor-liquid nuclealion, Physical Review Letters 76, 2754–2757.CrossRefGoogle Scholar
  55. 55.
    Oxtoby, D.W., and Evans, R. (1988) Nonclassical eecleation theory for the gas-liquid transition, J. Chem. Phys. 99, 1521.Google Scholar
  56. 56.
    Oxtoby, D. (1991) Crystallization of liquids: a density-functional approach. In Liquids, Freezing, and Glass Transition; J.P. Hansen, D. Levesque, and J. Zinn-Justin, eds. NATO Adv. Study Inst. Ch. 3. North-Holland, Amsterdam.Google Scholar
  57. 57.
    Zeng, X.C., and Oxtoby, D.W. (1991) Binary Homogeneous Nucleation Theory for the gas-liquid transition: a nonclassical approach, J. Chem. Phys. 95, 5940.CrossRefGoogle Scholar
  58. 58.
    Zeng, X.C., and Oxtoby, D.W. (1991) Gas-liquid nocleation in Lennard-jones fluids, J. Chem. Phys. 94, 4772.CrossRefGoogle Scholar
  59. 59.
    Harrowell, P., and Oxtoby, D.W. (1984) A molecular theory of crystal nucleation from the melt, J. Chem. Phys. 80, 1639.CrossRefGoogle Scholar
  60. 60.
    Oxtoby, D.W. (1992) Homogeneous nucleation: theory and experiment, J. Phys. Cond. Matt. 4, 7627.CrossRefGoogle Scholar
  61. 61.
    Talanqeer, V., and Oxtoby, D.W. (1993) Nucleation in dipolar fluids: Stockmayer fluids, J. Chem. Phys. 99, 4670.CrossRefGoogle Scholar
  62. 62.
    Talanquer, V., and Oxtoby, D.W. (1995) Nucleation of bubbles in binary fluids, J. Chem. Phys. 102, 2156.CrossRefGoogle Scholar
  63. 63.
    Reiss, H., Katz, J.L., and Cohen, E.R. (1968) Translation-rotation paradox in the theory of nucleation, J. Chem. Phys. 48, 5553.CrossRefGoogle Scholar
  64. 64.
    Reiss, H., Tabazadeh, A. and Talbot, J. (1990) Molecular theory of vapor phase nucleation: the physically consistent cluster, J. Chem. Phys. 92, 1266.CrossRefGoogle Scholar
  65. 65.
    Ellerby, H.M., Weakliem, C.L., and Reiss, H. (1991) Toward a molecular theory of vapor-phase nucleation. I. Identification of the average embryo, J. Chem. Phys. 95, 9209.CrossRefGoogle Scholar
  66. 66.
    Ellerby, H.M., and Reiss, H. (1992) Toward a molecular theory of vapor-phase nucleation.II. Fundamental treatment of the cluster distribution, J. Chem. Phys. 97, 5766.CrossRefGoogle Scholar
  67. 67.
    Weakliem, C.L., and Reiss, H. (1993) Toward a molecular theory of vapor-phase nucleation. III. Thermodynamic properties of argon clusters from Monte Carlo simulations and a modified liquid drop theory, J. Chem. Phys. 99, 5374.CrossRefGoogle Scholar
  68. 68.
    Weakliem, C.L., and Reiss, H. (I994) Toward a molecular theory of vapor-phase nucleation. IV. Rate theory using the modified liquid drop model”, J. Chem. Phys. 101, 2398.Google Scholar
  69. 69.
    Blander, M., and Katz, J.L. (1975) Bubble nucleation in liquids, AIChEJ. 21, 833.CrossRefGoogle Scholar
  70. 70.
    Avedisian, C.T. (1985) The homogeneous nucleation limite of liquids, J. Phys. Chem. Ref. Data 14, 695.CrossRefGoogle Scholar
  71. 71.
    Skripov, V.P. (1974) Metastable Liquids. Wiley, New York.Google Scholar
  72. 72.
    Skripov, V.P., Sinitsyn, E.N., Pavlov, E.A., Ermakov, G.V., Muratov, G.N., Bulaeov, N.V., and Baidakov, V.G. (1988) Thermophysical Properties of Liquids in the Metastabk (Superheated) State. Gordon and Breach, New York.Google Scholar
  73. 73.
    Kagan, Yu. (1960) The kinetics of boiling of a pure liquid, Russ. J. Phys. Chem. 34, 42.Google Scholar
  74. 74.
    Apfel, R.E. (1972) Water superheated to 279.5°C at atmospheric pressure, Nature 238, 63.Google Scholar
  75. 75.
    Holden, B.S., and Katz, J.L. (1978) The homogeneous nucleation of bubbles in superheated binary liquid mixtures, AIChEJ. 24, 260.CrossRefGoogle Scholar
  76. 76.
    Dixon, D.J., and Johnston, K.P. (1993) Formation of microporous polymer fibers and oriented fibrils by precipitattion with a compressed fluid antisolvent, J. Appl. Polym. Sci. 50, 1929–1942.CrossRefGoogle Scholar
  77. 77.
    Weidner, E., Steiner, R., and Knez, Z. (1996) Powder generation from polyethyleneglycols with compressible fluids. In High Pressure Chemical Engineering, R. von Rohr and C. Trepp, eds., Process Technology Proceedings, 12, 223–228, Elsevier, Amsterdam.Google Scholar
  78. 78.
    Turnbull, D., and Fisher, J.C. (1949) Rate of nucleation in condensed systems, J. Chem. Phys. 17, 71.CrossRefGoogle Scholar
  79. 79.
    Buckle, E.R. (1961) Studies on the freezing of pure liquids. II. The kinetics of homogeneous nucleation in supercooled liquids, Proc. Roy. Soc. A 261, 189.CrossRefGoogle Scholar
  80. 80.
    Jackson, K.A. (1965) Nucleation from the melt, Ind. Eng. Chem. 57, 28.CrossRefGoogle Scholar
  81. 81.
    Turnbull, D. (1969) Under what conditions can a glass be formed? Contemp. Phys. 10, 473.CrossRefGoogle Scholar
  82. 82.
    Woodruff, D.P. (1973) The Solid-Liquid Interface, Cambridge University Press, Cambridge.Google Scholar
  83. 83.
    Oxtoby, D.W. (1988) Nucleation of crystals from the melt, Adv.Chem.Phys. 70, 263.CrossRefGoogle Scholar
  84. 84.
    Tiller, W.A. (1991) The Science of Crystallization: Microscopic Interfacial Phenomena, Cambridge University Press, Cambridge.Google Scholar
  85. 85.
    Myersoe, A.S., and Izmailov, A.F. (1993) The structure of supersaturated solutions. In Handbook of Crystal Growth, D.T.J. Hurtle, ed., Vol. 1, chap. 5, Elsevier, Amsterdam.Google Scholar
  86. 86.
    Franks, F. (1982) The properties of aqueous solutions at subzero temperature. In Water: a Comprehensive Treatise, F. Franks, ed., Vol. 7, chap. 3, Plenum, New York.Google Scholar
  87. 87.
    Perepezko, J.H. (1984) Nucleation in undercooled liquids, Mater. Sei. and Eng. 65, 125.CrossRefGoogle Scholar
  88. 88.
    Cwilong, B.M. (1945) Sublimation in a Wilson chamber, Nature, 155, 361.CrossRefGoogle Scholar
  89. 89.
    Cwilong, B.M. (1947) Sublimation in a Wilson chamber, Proc. Roy.Soc. A 190, 137.CrossRefGoogle Scholar
  90. 90.
    Thomas, D.G., and Staveley, L.A.K. A study of the supercooling of drops of some molecular liquids, J.Chem. Soc. 4569.Google Scholar
  91. 91.
    Coriell, S.R., Hardy, S.C., and Sekerka, R.F. (1971) A nonlinear analysis of experiments on the morphological stability of ice crystals freezing from aqueous solutions, J. Cryst. Growth 11, 53.CrossRefGoogle Scholar
  92. 92.
    Rasmussen, D.H., and MacKenzie, A.P. (1972). In Water Structure and the Water Polymer Interface, H.H.G. Jellinek, ed., 126445. Plenum, New York.Google Scholar
  93. 93.
    Rasmussen, D.H., MacKenzie, A.P., Angell, C.A. and Tucker, J.C. (1973) Anomalous heat capacities of supercooled water and heavy water, Science 181, 342.CrossRefGoogle Scholar
  94. 94.
    Angell, C.A. (1982) Supercooled water. In Water: a Comprehensive Treatise, F. Franks, ed. Vol 7, chap. 1, Plenum, New York.Google Scholar
  95. 95.
    Oxtoby, D. (I984) Nucleation of crystals from the melt. In Dynamic Aspects of Structural Change in Liquids and Glasses: C.A. Angell and M. Goldstein, eds. Ann. N.Y. Acad. Sci. 484, 26.Google Scholar
  96. 96.
    Ramakrishnan, T.V., and Yussouf, M. (1979) First-principles order parameter theory of freezing, Phys. Rev. B. 19, 2775.CrossRefGoogle Scholar
  97. 97.
    Haymet, A.D.J., and Oxtoby, D.W. (1981) A molecular theory of the solid-liquid interface, J. Chem. Phys. 74, 2559.CrossRefGoogle Scholar
  98. 98.
    Oxtoby, D.W., and Haymet, A.D.J. (1982) A molecular theory of the solid-liquid interface. II. Study of bcc crystal-melt interfaces, J. Chem. Phys. 76, 6262.CrossRefGoogle Scholar
  99. 99.
    Cahe, J.W., and Milliard, J.E. (1958) Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys. 28, 258.CrossRefGoogle Scholar
  100. 100.
    Cahn, J.W., and Milliard, J.E. (1959) Free energy of a nonuniform system. III. Nucleation in a twocomponent incompressible fluid, J. Chem. Phys. 31, 688.CrossRefGoogle Scholar
  101. 101.
    Cahn, J.W., and Milliard, J.E. (1971) Spinodal decomposition: a reprise Acta Metall. 19, 151.CrossRefGoogle Scholar
  102. 102.
    Cahn, J. W. (1959) Free energy of a nonuniform system. II. Thermodynamic basis”, J. Chem. Phys. 30, 1121.CrossRefGoogle Scholar
  103. 103.
    Cahn, J.W. (1961) On spinodal decomposition, Acta Metall. 9, 795.CrossRefGoogle Scholar
  104. 104.
    Cahn, J.W. (1962) On spinodal decomposition in cubic crystals, Acta Metall. 10, 179.CrossRefGoogle Scholar
  105. 105.
    Cahn, J.W. (1965) Phase separation by spinodal decomposition in isotropic systems, J. Chem. Phys. 42, 93.CrossRefGoogle Scholar
  106. 106.
    van der Waals, J.D. (1893) Thermodynamische theorie de capillariteit in de onderstelling von continue dichtheidsverandering, Verhand. Konink. Akad. Wetensch. Amsterdam. Sect. I Deel I, 2.Google Scholar
  107. 107.
    Rowlinson, J.S. (1979) Translation of J.D. van der Waats, “The Thermodyeamic Theory of Capillarity under the Hypothesis of Continuous Variation in Density”, J. Stat. Phys. 20, 197.CrossRefGoogle Scholar
  108. 108.
    Abraham, F.F. (1975) A theory for the thermodynamics and structure of nonueiform systems, with application to the liquid-vapor interface and spinodal decomposition, J. Chem. Phys. 63, 157.CrossRefGoogle Scholar
  109. 109.
    Abraham, F.F. (1979) On the thermodynamics, structure, and phase stability of the nonueiform fluid state, Phys. Rep. 53, 95.CrossRefGoogle Scholar
  110. 110.
    Davis, H.T., and Scriveo, L.E. (1982) Stress and structure in fluid interfaces, Adv. Chem.Phys. 59 357.CrossRefGoogle Scholar
  111. 111.
    McCoy, B.F., and Davis, H.T. (1979) Free-energy of iehomogeneous fluids, Phys. Rev. A 20 1201.CrossRefGoogle Scholar
  112. 112.
    Bongiomo, V. Scriven, L.E., and Davis, H.T. (1976) Molecular theory of fluid interfaces, J. Colloid. Interf. Sci. 57, 462.CrossRefGoogle Scholar
  113. 113.
    Rowlinson, J.S., and Widom, B. (1982) Molecular Theory of Capillarity. Oxford University Press, Oxford.Google Scholar
  114. 114.
    Griffiths, R.B., and Wheeler, J.C. (1970) Critical points in multicomponent systems, Phys. Rev. A. 2, 1047.CrossRefGoogle Scholar
  115. 115.
    Fisk, S., and Widora, B. (1969) Structure and free energy of the interface between fluid phases in equilibrium near the critical point, J. Chem. Phys. 50, 3219.CrossRefGoogle Scholar
  116. 116.
    Mruzik, M.R., Abraham, F.F., and Pound, G.M. (1978) Phase separation in fluid systems by spinodal decomposition. IL A molecular dynamics computer simulation, J. Chem. Phys. 69, 3462.CrossRefGoogle Scholar
  117. 117.
    Abraham, F.F., Koch, S.W., and Desai, R.C. (1982) Computer-simulation of an unstable twodimensional fluid: time-dependent morphology and scaling, Phys. Rev. Lett. 49, 923.CrossRefGoogle Scholar
  118. 118.
    Koch, S.W., Desai, R.C., and Abraham, F.F. (1983) Dynamics of phase separation in two-dimensional fluids: spinodal decomposition, Phys. Rev. A. 27, 2152.CrossRefGoogle Scholar
  119. 119.
    Huang, J.S., Goldberg, W.I., and Bjerkaas, A.W. (1974) Study of phase separation in a critical binary liquid mixture: spinodal decomposition, Phys. Rev. Lett. 32, 921.CrossRefGoogle Scholar
  120. 120.
    Chou, Y.C., and Goldburg, W.I. (1979) Phase separation and coalescence in critically quenched isobutyric acid-water and 2,6-Iutidine-water mixtures, Phys. Rev. A 20, 2105.CrossRefGoogle Scholar
  121. 121.
    Chou, Y.C., and Goldburg, W.I. (1981) Angular distribution of light scattered from critically quenched mixtures, Phys. Rev. A 23, 858.CrossRefGoogle Scholar
  122. 122.
    Wong, N.-C., and Knobler, C.M. (1978) Light scattering study of phase separation in isobutyric acid + water mixtures, J. Chem. Phys. 69, 725.CrossRefGoogle Scholar
  123. 123.
    Wong, N.-C., and Knobler, C.M. (1981) Light-scattering studies of phase separation in isobutyric acid + water mixtures: hydrodynamic effects, Phys. Rev. A 24, 3205.CrossRefGoogle Scholar
  124. 124.
    Knobler, C.M., and N.-C. Wong (1981) Light scattering studies of phase separation in isobutyric acid and water mixtures. 2. Test of scaling, J. Phys. Chem. 85, 1972.CrossRefGoogle Scholar
  125. 125.
    Guenoon, P., Beysens, D., and Robert, M. (1990) Dynamics of wetting and phase separation, Phys. Rev. Lett. 65, 2406.CrossRefGoogle Scholar
  126. 126.
    Chan, C.K., Perrot, F., and Beysens, D. (1991) Experimental study and model simulation of spinodal decomposition in a binary mixture under shear, Phys. Rev. A 43, 1826.CrossRefGoogle Scholar
  127. 127.
    Cummieg, A., Wiltzius, P., Bates, F.S., and Rosedale, J.H. (1992) Light scattering experiments on phase separation dynamics in binary fluid mixtures, Phys. Rev. A 45, 885.CrossRefGoogle Scholar
  128. 128.
    Katzen, D., and Reich, S. (1993) Image analysis of phase separation in polymer blends, Europhys. Lett 21, 55.CrossRefGoogle Scholar
  129. 129.
    Beysens, D., Goenoun, P., Sibille, P., and Kumar, A. (1994) Dimple and nose coalescences in phaseseparation processes, Phys. Rev. E 50, 1299.CrossRefGoogle Scholar
  130. 130.
    Lifshitz, E.M., and Slyozov, V.V. (1961) The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids. 19, 35.CrossRefGoogle Scholar
  131. 131.
    Binder, K., and Stauffer, D. (1974) Theory for the slowing down of the relaxation and spinodal decomposition of binary mixtures, Phys. Rev. Lett. 33, 1006.CrossRefGoogle Scholar
  132. 132.
    Binder, K. (1977) Theory of the dynamics of 'clusters'. II. Critical diffusion in binary systems and the kinetics of phase separation, Phys. Rev. B 15, 4425.CrossRefGoogle Scholar
  133. 133.
    Siggia, E.D. (1979) Late stages of spinodal decomposition in binary mixtures, Phys. Rev. A 20, 595.CrossRefGoogle Scholar
  134. 134.
    Cook, H.E. (1970) Brownian motion in spinodal decomposition, Acta Metall. 18, 297.CrossRefGoogle Scholar
  135. 135.
    Langer, J.S. (1971) Theory of spinodal decomposition in alloys, Ann. Phys. 65, 53.CrossRefGoogle Scholar
  136. 136.
    Langer, J.S. (1973) Statistical methods in the theory of spinodal decomposition, Acta Metall. 21, 1649.CrossRefGoogle Scholar
  137. 137.
    Langer, J.S., Bar-on, M., and Miller, H.D. (1975) New computational method in the theory of spinodal decomposition, Phys. Rev. A. 11, 1417.Google Scholar
  138. 138.
    Binder, K., Billotet, C., and Mirold, P. (1978) On the theory of spinodal decomposition in solid and liquid binary Mixtures, Z. Physik B. 30, 183.CrossRefGoogle Scholar
  139. 139.
    Koch, S.W., Desai, R.C., and Abraham, F.F. (1982) Spinodal decomposition of a one-component fluid: a hydrodynamic fluctuation theory and comparison with computer simulation, Phys. Rev. A. 26, 1015.CrossRefGoogle Scholar
  140. 140.
    Bortz, A.B., Kalos, M.H., Lebowitz, J.L., and Zandejas, M.A. (1974) Time evolution of a quenched binary alloy: computer simulation of a two-dimensional model system, Phys. Rev. B. 10, 535.CrossRefGoogle Scholar
  141. 141.
    Marro, J., Bortz, A.B., Kalos, M.H., and Lebowitz, J.L. (1975) Time evolution of a quenched binary alloy. II. Computer simulation of a three-dimensional model system, Phys. Rev. B. 12, 2000.Google Scholar
  142. 142.
    Rao, M., Kalos, M.H., Lebowitz, J.L., and Marro, J. (1976) Time evolution of a quenched binary alloy. III. Computer simulation of a two-dimensional model system, Phys. Rev. B. 13, 4328.CrossRefGoogle Scholar
  143. 143.
    Sur, A., Lebowitz, J.L., Marro, J., and Kalos, M.H. (1977) Time evolution of a quenched binary alloy. IV. Computer simulation of a three-dimensional model system, Phys. Rev, B. 15, 3014.CrossRefGoogle Scholar
  144. 144.
    Heerman, D.W. (1984) Test of the validity of the classical theory of spinodal decomposition, Phys. Rev.Utt. 52, 1126.Google Scholar
  145. 145.
    Kiran, E., and Zhuang, W. (1997) Miscibility and phase separation of polymere in near- and supercritical fluids. In Supercritical Fluids, Extraction and Pollution Prevention, M.A. Abraham and A.K. Sunol, eds., ACS Symp. Ser. 670, 2–36.Google Scholar
  146. 146.
    Xiong, Y., and Kiran, E. (1998) High-pressure scattering apparatus to study pressure-induced phase separation in polymer solutions, Rev. Sci. Instrum. 69, 1463–1471.CrossRefGoogle Scholar
  147. 147.
    Mawson, S., Kanakia, S., and Johnston, K.P. (1997) Metastable polymer blends by precipitation with a compressed fluid antisolvent, Polymer 38, 2957–2967.CrossRefGoogle Scholar
  148. 148.
    Dixon, D.J., Luna-Bárcenas, G., and Johnston, K.P. (1994). Microcellular microspheres and microballoons by precipitation with a vapour-liquid compressed fluid antisolvent, Polymer 35, 3998–4005.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • P. G. Debenedetti
    • 1
  1. 1.Department of Chemical EngineeringPrinceton UniversityPrincetonUSA

Personalised recommendations