Advertisement

Supercritical Water and Other Fluids — A Historical Perspective

  • E. U. Franck
Chapter
Part of the NATO Science Series book series (NSSE, volume 366)

Abstract

Dense, supercritical high pressure fluids find rapidly increasing interest in science and industry. Experimental research at the Institutes for Physical Chemistiy of Göttingen and Karlsruhe Universities has accompanied this development since the 1950’s. With am adequate selection of examples, a historical perspective will be attempted which is personal and cannot be representative of the development in the field in general. Supercritical water is the most important fluid. My own interest was initiated in 1953 by c. W. Correns of Mineralogy in Göttmgen, who slowed me that quarte and alkali halides dissolve in dense steam. TMs stimulated our investigation of electrolytic dissociation within a wide range of high temperatures and pressures along with other thermophysical properties of aqueous systems and related fluids.

Keywords

Diffusion Flame Supercritical Water Alkali Halide Critical Curve Static Dielectric Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Haar, L., Gallagher, J.S., Kell, G.S., (1988). NBS/NRC Steam Tables in SI-Units, US Nat. Bureau of Standards, Washington DC.Google Scholar
  2. 2.
    Grigull, E., (1982), (ed.) Probities of Water and Steam in Si-Units, Springen Berlin.Google Scholar
  3. 3.
    Andrews, T., (1869) On the continuity of gaseous and liquid states of matter, Phil Trans. 159, 575.CrossRefGoogle Scholar
  4. 4.
    Hannay, J.B., Hogarth, J., (1880), On the solubility of Solids in Gases, Proc. Roy. Soc. (London), 30, 178–188.Google Scholar
  5. 5.
    Eucken, A., Bresler, F., (1928) Die Änderung der Sättigungsdarapfdidite einiger Flüssigkeiten durch hochgespannte Gase und die van der Waals’schen Konstanten a12, Z. Physikal. Chem. A, 134, 230.Google Scholar
  6. 6.
    Braune, H., and Strassmann, F., (1929), Über die Löslichkeit von Jod in gasförmiger Kohlensäure, Z. Physikal. Chem. A, 143, 225–243.Google Scholar
  7. 7.
    Nacken, R., (1950), Die hydrothermale Mineralsynthese als Grundlage zur Züchtung von Quarzkristallen, Chemiker-Zeitung 74, 745–749.Google Scholar
  8. 8.
    Morey, G.W., (1957) The solubility of solids in gases, Econ. Geol. 52, 225–251.CrossRefGoogle Scholar
  9. 9.
    Marshall, W.L., et al, (1960), Reactor Chemistry Div. Annual Progress Rep., ORNL 2931 and ORNL-3004, UC-81-Reactors-Power, Oak Ridge, Tom.Google Scholar
  10. 10.
    Robin, S., and Voder, B., (1953), Solubility in compressed gases, Disc. Fan Soc. No. 15, p. 233–238.CrossRefGoogle Scholar
  11. 11.
    Ewald, A.H., Jepson, W.B., and Rowlinson, J.S., The solubility of solids in gases, Disc. Fan Soc. No. 15, p. 238–243.Google Scholar
  12. 12.
    Franck, E.U., (1961), Überkritisch Wasser als elektrolytisches Lösungsmittel, Angewandte Chemie 73, 309–322.CrossRefGoogle Scholar
  13. 13.
    Fogo, J.K., Benson, S.W., and Copeland C.S., (1953), The electrical conductivity of supercritical solutions of sodium chloride and water, J. Chem. Physics 22, 212–216.Google Scholar
  14. 14.
    Kennedy, G.C., (1950), PVT-relations in water at elevated temperatures and pressures, Amer. J. of Science, 248, 540–564.CrossRefGoogle Scholar
  15. 15.
    Franck, E.U., (1956), Hochverdichteter Wasserdampf I. Elektrolytische Leitfähigkeit in KCl-H2O-Lösungen bis 750 °C, Z. Physikal. Chem., N.F., 8, 92–106.CrossRefGoogle Scholar
  16. 16.
    Franck, E.U., (1956), Hochverdichteter Wasserdampf II. Ionendissoziation von KCl in H2O bis 750 °C., Z. Physikal. Chem., N.F.; 8, 107–126.CrossRefGoogle Scholar
  17. 17.
    Franck, E.U., (1956), Hochverdichteter Wasserdampf III. lonendissoziation von HCl, KCl and H2O in übakritischem Wasser, Z. Physikal. Chem., NF 8, 192–206.CrossRefGoogle Scholar
  18. 18.
    Ho, P.C., and Palmer, D.A., (1998) Determination of ion association in dilute aqueous lithium chloride and lithium hydroxide solutions to 600 degrees C and 300 MPa by electrical conductance measurements, J. Chem. Eng. Data 43, 162–170.CrossRefGoogle Scholar
  19. 19.
    Holzapfel, W., and Franck, E.U., (1966), Leitfähigkeit und lonendissoziation des Wassers bis 1000 °C und 100 kbar, Ber. Bunsenges. Physikal Chem. 70, 1105–1112.Google Scholar
  20. 20.
    Mitchell, A.C., and Nellis, W.J., (1982), Equation of state and electrical conductivity of water and ammonia shocked to the 100 GPa pressure range, J. Chem. Phys. 76, 6273–6281.CrossRefGoogle Scholar
  21. 21.
    Marshall, W.L., and Franck, E.U., (1981), Ion product of water substance, 0-1000 °C, 1-10.000 bar, J. Phys. Chem. Ref. Data, 10, 295–304.CrossRefGoogle Scholar
  22. 22.
    Ritzert, G., and Franck, E.U., (1968), Elektrische Leitfähigkeit wässriger Lösungen bei hohen Temperaturen und Drücken bis 750 °C und 6 kbar. KCl BaCl2, Ba(OH)2, MgSO4, Ber. Bunsenges. Physikal Chem. 72, 798–808.Google Scholar
  23. 23.
    Mangold, K., and Franck, E.U., (1969), Elektrische Leitfähigkeit wässriger Lösungen bei hohen Temperaturen und Drücken II. Alkalichloride in Wasser bis 1000 °C und 12 kbar, Ber. Bunsenges. Physikal Chem. 73, 21–27.Google Scholar
  24. 24.
    Fuoss, R.M., and Accascina, F., (1959), Electrolytic Conductance, Interscience Publishers, New York.Google Scholar
  25. 25.
    Hensel, F., and Franck, E.U., (1966) Elektrische Leitfähigeit und Dichte von überkritischem gasförmigem Quecksilber unter hohen Drücken, Ber. Bunsenges. Physikal Chem. 70, 1154–1161. Franck, E.U., Hensel, F., (1966), Metallic Conductance of Supercritical Mercury Gas at High Pressures, Phys. Rev. 147, 109-110.Google Scholar
  26. 25a.
    W. Freyland and F. Hensel, The Metallic and Non-Metallic States of Matter, P.P. Edwards, C.N.R. Rao, Eds. Taylor and Francis, London (1985).Google Scholar
  27. 26.
    Keller, E., and Franck, E.U., (1997), Electric Conductivity of Supercritical Cesium-Cesium Hydride Mixtures of High Temperatures and Pressures, Ber. Bunsenges. Physikal Chem. 101, 821–830.CrossRefGoogle Scholar
  28. 26a.
    M.A. Bredig, in Molten Salt Chemistry (M. Blander, Ed.), Interscience, New York, (1964), p. 367Google Scholar
  29. 27.
    Burnham, C.W., Holloway, J.R., and Davis, N.F., (1969), The specific volume of water in the range 1000 to 8900 bars, 20 ° to 900 °C, Amer. J. Sci. 276A, 70.Google Scholar
  30. 28.
    Maier, S., and Franck, E.U., (1966), Die Dichte des Wassers bis 850 °C und 6000 bar, Ber. Bunsenges. Physikal. Chem. 70, 639–645.Google Scholar
  31. 29.
    Köster, H., and Franck, E.U., (1969), Das spezifische Volumen des Wassers bei hohen Drücken bis 600 °C und 10 kbar, Ber. Bunsenges. Physikal. Chem. 73, 716–722.Google Scholar
  32. 30.
    Dudziak, K.H., and Franck, E.U., (1966), Messungen der Viskosität des Wassers bis 560 °C und 3500 bar, Ben Bunsenges. Physikal Chem. 70, 1120–1128.Google Scholar
  33. 31.
    Lamb, W., Hoffman, G.A.; and Jonas, J., (1981), Self-diffusion in compressed supercritical water, J. Chem. Phys. 74, 6875–6880.CrossRefGoogle Scholar
  34. 32.
    Butenhoff, T., Goemans, M., and Buelow, S., (1996), Mass diffusion coefficients and thermal diffusivity in concentrated hydrothermal NaNO3 solutions, J. Phys. Chem. 100, 5982–5992.CrossRefGoogle Scholar
  35. 33.
    Dietz, F.J., de Groot, J.J., and Franck, E.U., (1981), The thermal conductivity of water to 250 °C and 350 MPa, Ber. Bunsenges. Physikal Chem. 85, 1005–1009.CrossRefGoogle Scholar
  36. 34.
    Kohl, W., Lindner, H.A., and Franck, E.U., (1991), Raman spectra of water to 400 °C and 3000 bar, Ber. Bunsenges. Physikal Chem. 95, 1586–1593.CrossRefGoogle Scholar
  37. 35.
    Franck, E.U., and Roth, K.H., (1967), Infrared absorption of HDO in water at high pressures and temperatures, Disc. Far. Soc. 43, 108–114.CrossRefGoogle Scholar
  38. 36.
    Heger, K., Uematsu, M., and Franck, E.U., (1980), The static dielectric constant of water at high pressures and temperatures to 500 MPa and 550 °C, Ber. Bunsenges. Phys. Ckem. 84, 758–762.CrossRefGoogle Scholar
  39. 37.
    Deul, R., and Franck, E.U., (1991) The static dielectric constant of the water-benzene mixture system to 400 °C and 2800 bar, Ber. Bunsenges. Phys. Chem. 95, 847–853.CrossRefGoogle Scholar
  40. 38.
    Uematsu, M., and Franck, E.U., (1980), Static dielectric constant of water and steam, J. Phys. Chem. Ref. Data, 9; 1291–1306.CrossRefGoogle Scholar
  41. 39.
    Franck, E.U., Rosenzweig, S., and Christoforakos, M., (1990), Calculation of the dielectric constant of water to 1000 °C and very high pressures, Ber. Bunsenges. Phys. Chem. 94, 199–203.CrossRefGoogle Scholar
  42. 40.
    Fernandez, D.P., Goodwin, A.R.H., Lemmon, E.W., Levelt Sengers, J.M.H., and Williams, C.R.J., (1997) A formulation for the static permittivity of water and steam at temperatures to 873 K at pressures up to 1200 MPa., J. of Phys. and Chem. Ref. Data 26, 1125–1166.CrossRefGoogle Scholar
  43. 41.
    R.A. Laudise, and J.W. Nielsen, ((1969), Hydrothermal Crystal Growth in Seite and Tumbull (eds.), “Solid State Physics“, Academic Press, N.Y.Google Scholar
  44. 42.
    Franck, E.U., (1956), Zur Lösüchkeit fester Stoffe in verdichteten Gasen, Z. Physikal. Chem., N.F. 6, 345–355.CrossRefGoogle Scholar
  45. 43.
    Lüdemann, H.D., and Franck, E.U., (1967), Absorptionsspektren bei hohen Drücken und Temperaturen I. Wässrige Co(II)-und Ni(II)-halogenid-Lungen bis zu 500 °C and 6 kbar, Ber. Bunsenges. Physikal. Chemie 71, 455–460.Google Scholar
  46. 44.
    Lüdemam, H.D., and Franck, E.U., (1968), Absorptionsspektren bei hohen Drücken und Temperaturen II. Co(II)-und Ni(II)-halogenide in konzentrierten Alkailsatz-Lösungen, Ber. Bunsenges. Physikal. Chemie 72, 514–523.Google Scholar
  47. 45.
    Lüdemann, H.D., and Franck, E.U., (1968), Absorptionsspektren bei hohen Drücken III. Wässrige SO2-Lösungen bei 25 °C bis zu 6 kbar, Ber. Bunsenges. Physikal. Chem. 72, 523–525.Google Scholar
  48. 46.
    Rössling, G., and Franck, E.U., (1983), Solubility of anthracene in dense gases and liquids to 200 °C and 2000 bar, Ber. Bunsenges. Physikal. Chem. 87, 882–890.CrossRefGoogle Scholar
  49. 47.
    Ebeling, H., and Franck, E.U., (1984), Spectroscopic determination of caffeine solubility in supercritical carbon dioxide, Ber. Bunsenges. Phys. Chem. 88, 862–865.CrossRefGoogle Scholar
  50. 48.
    Christoforakos, M., and Franck, E.U., (1986), An equation of state for binary fluid mixtures to high temperatures and to high pressures, Ber. Bunsenges. Phys. Chem. 90, 780–789.CrossRefGoogle Scholar
  51. 49.
    Chao, K.C., and Robinson, R.L., (1986), Eds., Equation of State. Theory and Applications, ACS Symposium Series, Vol. 300, Amer. Chem. Soc.Google Scholar
  52. 50.
    Sengers, J.V. Kayser, R.F., Peters,C.J., and White, H.J., (2000), Eds. Equations of State for Fluids, Backwell Oxford.Google Scholar
  53. 51.
    Tsiklis, D.S., Linshits, L.R., and Guryunora, N.P., (1965), Phase Equilibria in the System Ammonia-water, Zh. Fiz. Kim. 39, 2978.Google Scholar
  54. 52.
    Seward, T.M., and Franck, E.U., (1981), The system hydrogen-water up to 440 °C and 2500 bar pressure, Ber. Bunsenges. Physik. Chem. 85, 2–7.CrossRefGoogle Scholar
  55. 53.
    Sretenskaja, N.G., Sadus, R.J., and Franck, E.U., (1995), High pressure phase equilibria and critical curve of the water-helium system to 2000 MPa and 723 K, J. Phys. Chem. 99, 4273–4277.CrossRefGoogle Scholar
  56. 54.
    Mather, A.N., Sadus, R.J., and Franck, E.U., (1993), Phase equilibria in (water+krypton) at pressures from 31 MPa to 273 MPa and temperatures from 610 K to 660 K and in (water-neon) from 45 MPa to 255 MPa from 660 K to 700 K, J. Chem. Thermodynamics, 25, 771–779.CrossRefGoogle Scholar
  57. 55.
    Wu, G., Heilig, M., Lentz, H., and Franck, E.U., (1990), High presure phase equilibria of the waterargon system, Ber. Bunsenges. Physikal Chemie 94, 24–27.CrossRefGoogle Scholar
  58. 56.
    Mather, A.N., Sadus, R.J., and Franck, E.U., (1993), Phase equilibria in (water-krypton) at pressures from 31 MPa to 273 MPa and temperatures from 610 K to 660 K and in (water-neon) from 45 MPa to 255 MPa from 660 K to 700 K, J. Chem. Thermodynamics, 25, 771–779.CrossRefGoogle Scholar
  59. 57.
    Franck, E.U., Lentz, H., and Welsch, H., (1974), The system water-xenon at high pressures and temperatures, Z. Physikal Chemie, N.F. 93, 95–108.CrossRefGoogle Scholar
  60. 58.
    Wei, Y.S., Sadus, R.J., and Franck, E.U., (1996), Binary mixtures of water + five noble gases: comparison of binodal and critical curves at high pressures, Fluid Phase Equil. 123, 1–15.CrossRefGoogle Scholar
  61. 59.
    Japas, M.L., and Franck, E.U., (1985), High pressure phase equilibria and PVT-data of the water-nitrogen system to 673 K and 250 MPa, Ber. Bunsenges. Phys. Chem. 89, 783–800.Google Scholar
  62. 60.
    Japas, M.L., and Franck, E.U., (1985), High pressure phase equilibria and PVT-data of the water oxygen system including water-air to 673 K and 250 MPa, Ber. Bunsenges. Phys. Chem. 89, 1268–1275.CrossRefGoogle Scholar
  63. 61.
    Tian, Yiling, Michelberger, Th., and Franck, E.U.; (1991), High pressure phase equilibria and critical curves of (water-n-butane) and (water-n-hexane) to temperatures of 700 K and pressures to 300 MPa, J. Chem. Thermodynamics 23, 105–112.CrossRefGoogle Scholar
  64. 62.
    Shmonov, V.M., Sades, R.J., and Franck, E.U., (1993), High pressure phase equilibria and supercritical pVT-data of the binary water-methane system to 723 K and 200 MPa, J. Phys. Chem. 97, 9054–9059.CrossRefGoogle Scholar
  65. 63.
    Brunnen E., (1990), Fluid mixtures at high pressures DC phase separation and critical phenomena in 23 (n-alkane-water) mixtures, J. Chem. Thermodynamics, 22, 335–353.CrossRefGoogle Scholar
  66. 64.
    Neichel, M., and Franck, E.U., (1996), Critical curves and phase equilibria of water-n-alkane binary systems to high pressures and temperatures, J. Supercritical Fluids, 9, 69–74.CrossRefGoogle Scholar
  67. 65.
    Alwani, Z., and Schneider, G.M., (1969), Phasengleicttgewiclite, kritische Erscheinungen und PVT-Daten in Mischungen von Wasser mit araniatiscfien Kohlenwasserstoffen Ms 420 °C und 2200 bar, Ber. Bunsenges. Phys.Chem. 73, 301–794.Google Scholar
  68. 66.
    Franck, E.U., and Tödheide, K., (1959), Themische Eigenschaften überkritischer Mischungen von Kohlendioxid und Wasser Ms zu 750 °C und 2000 atm., Z. Physikal Chem., N.F.; 22, 233–245.Google Scholar
  69. 67.
    Math, A.E, and Franck, E.U., (1992), Phase equilibria in the system carbon dioxide-water at elevated pressures, J. Physical. Chem. 96, 6–8.CrossRefGoogle Scholar
  70. 68.
    Heilig, M., and Franck, E.U., (1989), Calculation of thermodynamic properties of binary fluid mixtures to high temperatures and high pressures, Ber. Bunsenges. Phys. Chem. 93, 898–905.CrossRefGoogle Scholar
  71. 69.
    Heilig, M., and Franck, E.U., (1990), Phase equilibria of muhicomponent fluid systems to high pressures and temperatures, Ber. Bunsenges. Phys. Chem. 94, 27–35.CrossRefGoogle Scholar
  72. 70.
    Gehrig, M., Lente, H., and Franck, E.U., (1986), The system water-carhon dioxide-sodium chloride to 773 K and 300 MPa, Ber. Bunsenges. Phys. Chem. 90, 525–533.CrossRefGoogle Scholar
  73. 71.
    Krader, Th., and Franck, E.U., (1987), The ternary systems H2O-CH4-NaCl and H2O-CH4-CaCl2 to 800 K and 250 MPa, Ber. Bunsenges. Phys. Chem. 91, 627–634.Google Scholar
  74. 72.
    Michelbefger, Th., and Franck, E.U., (1990), Ternary systems water-alkane-sodium chloride and methanolmethane-sodium bromide to high pressures and temperatures, Ber. Bunsenges. Phys. Chem. 94, 1134–1143.CrossRefGoogle Scholar
  75. 73.
    Kerechbaum, S., and Franck, E.U., (1995), High pressure supercritical PVT-data of water-sodium hydroxide mixtures and of liquid sodium hydroxide to 673 K and 400 MPa, Ber. Bunsenges. Phys. Chem. 99, 624–632.CrossRefGoogle Scholar
  76. 74.
    Eberz, A., and Franck, E.U., (1995), High pressure electrolyte conductivity of the concentrated fluid water-sodium hydroxide system to 400 °C and 3000 bar, Ber. Bunsenges. Phys. Chem. 99, 1091–1103.Google Scholar
  77. 75.
    Hirth, T., and Franck, E.U., (1993), Oxidation and hydrothermolysis of hydrocarbons in supercritical water at high pressures, Ber. Bunsenges. Phys. Chem. 97, 1091–1098.CrossRefGoogle Scholar
  78. 76.
    Schilling, W., and Franck, E.U., (1988), Combustion and diffusion flames at high pressures to 2000 bar, Ber. Bunsenges. Phys. Chem. 92, 631–636.Google Scholar
  79. 77.
    Pohsner, G.M., and Franck, E.U., (1994), Spectra and temperatures of diffusion flames at high pressures to 1000 bar, Ber. Bunsenges. Phys. Chem. 98, 1082–1090.CrossRefGoogle Scholar
  80. 78.
    Franck, E.U., and Spalthoff, W., (1956), Die kritischen Daten des Fluorwasserstoffs I. Spezifische Wärme, Dampfdruck und Dichte bis 300 °C und 300 bar, Z. Elektrochemie (Ber. Bunsenges. Physik. Chemie), 61, 348–357.Google Scholar
  81. 79.
    Franck, E.U., Wiegand, G, and Gerhardt, R.D., (1999), The density of hydrogen fluoride at high pressures to 973 K and 200 MPa, J. of Supercritical Fluids. Accepted for 1999 (in press).Google Scholar
  82. 80.
    Wiegand, G.; and Franck, E.U., (1994), Interfacial tension between water and non-polar fluids up to 473 K and 2800 bar, Ber. Bunsenges. Phys. Chemie 98, 809–817.CrossRefGoogle Scholar
  83. 81.
    E.U. Franck, (1987), Fluids at high pressures and temperatures, J. Chem. Thermodynamics 19, 225–242.CrossRefGoogle Scholar
  84. 82.
    R.W. Shaw, R.B. Brill, A.A. Clifford, C.A. Eckert, E.U. Franck (1991), Supercritical Water, Chem. and Eng. News 69, 51, p. 26.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • E. U. Franck
    • 1
  1. 1.Institute for Physical ChemistryUniversity of KarlsruheKarlsruheGermany

Personalised recommendations