Skip to main content

Supercritical Water and Other Fluids — A Historical Perspective

  • Chapter
Supercritical Fluids

Part of the book series: NATO Science Series ((NSSE,volume 366))

Abstract

Dense, supercritical high pressure fluids find rapidly increasing interest in science and industry. Experimental research at the Institutes for Physical Chemistiy of Göttingen and Karlsruhe Universities has accompanied this development since the 1950’s. With am adequate selection of examples, a historical perspective will be attempted which is personal and cannot be representative of the development in the field in general. Supercritical water is the most important fluid. My own interest was initiated in 1953 by c. W. Correns of Mineralogy in Göttmgen, who slowed me that quarte and alkali halides dissolve in dense steam. TMs stimulated our investigation of electrolytic dissociation within a wide range of high temperatures and pressures along with other thermophysical properties of aqueous systems and related fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haar, L., Gallagher, J.S., Kell, G.S., (1988). NBS/NRC Steam Tables in SI-Units, US Nat. Bureau of Standards, Washington DC.

    Google Scholar 

  2. Grigull, E., (1982), (ed.) Probities of Water and Steam in Si-Units, Springen Berlin.

    Google Scholar 

  3. Andrews, T., (1869) On the continuity of gaseous and liquid states of matter, Phil Trans. 159, 575.

    Article  Google Scholar 

  4. Hannay, J.B., Hogarth, J., (1880), On the solubility of Solids in Gases, Proc. Roy. Soc. (London), 30, 178–188.

    Google Scholar 

  5. Eucken, A., Bresler, F., (1928) Die Änderung der Sättigungsdarapfdidite einiger Flüssigkeiten durch hochgespannte Gase und die van der Waals’schen Konstanten a12, Z. Physikal. Chem. A, 134, 230.

    CAS  Google Scholar 

  6. Braune, H., and Strassmann, F., (1929), Über die Löslichkeit von Jod in gasförmiger Kohlensäure, Z. Physikal. Chem. A, 143, 225–243.

    CAS  Google Scholar 

  7. Nacken, R., (1950), Die hydrothermale Mineralsynthese als Grundlage zur Züchtung von Quarzkristallen, Chemiker-Zeitung 74, 745–749.

    CAS  Google Scholar 

  8. Morey, G.W., (1957) The solubility of solids in gases, Econ. Geol. 52, 225–251.

    Article  CAS  Google Scholar 

  9. Marshall, W.L., et al, (1960), Reactor Chemistry Div. Annual Progress Rep., ORNL 2931 and ORNL-3004, UC-81-Reactors-Power, Oak Ridge, Tom.

    Google Scholar 

  10. Robin, S., and Voder, B., (1953), Solubility in compressed gases, Disc. Fan Soc. No. 15, p. 233–238.

    Article  Google Scholar 

  11. Ewald, A.H., Jepson, W.B., and Rowlinson, J.S., The solubility of solids in gases, Disc. Fan Soc. No. 15, p. 238–243.

    Google Scholar 

  12. Franck, E.U., (1961), Überkritisch Wasser als elektrolytisches Lösungsmittel, Angewandte Chemie 73, 309–322.

    Article  CAS  Google Scholar 

  13. Fogo, J.K., Benson, S.W., and Copeland C.S., (1953), The electrical conductivity of supercritical solutions of sodium chloride and water, J. Chem. Physics 22, 212–216.

    Google Scholar 

  14. Kennedy, G.C., (1950), PVT-relations in water at elevated temperatures and pressures, Amer. J. of Science, 248, 540–564.

    Article  CAS  Google Scholar 

  15. Franck, E.U., (1956), Hochverdichteter Wasserdampf I. Elektrolytische Leitfähigkeit in KCl-H2O-Lösungen bis 750 °C, Z. Physikal. Chem., N.F., 8, 92–106.

    Article  CAS  Google Scholar 

  16. Franck, E.U., (1956), Hochverdichteter Wasserdampf II. Ionendissoziation von KCl in H2O bis 750 °C., Z. Physikal. Chem., N.F.; 8, 107–126.

    Article  CAS  Google Scholar 

  17. Franck, E.U., (1956), Hochverdichteter Wasserdampf III. lonendissoziation von HCl, KCl and H2O in übakritischem Wasser, Z. Physikal. Chem., NF 8, 192–206.

    Article  CAS  Google Scholar 

  18. Ho, P.C., and Palmer, D.A., (1998) Determination of ion association in dilute aqueous lithium chloride and lithium hydroxide solutions to 600 degrees C and 300 MPa by electrical conductance measurements, J. Chem. Eng. Data 43, 162–170.

    Article  CAS  Google Scholar 

  19. Holzapfel, W., and Franck, E.U., (1966), Leitfähigkeit und lonendissoziation des Wassers bis 1000 °C und 100 kbar, Ber. Bunsenges. Physikal Chem. 70, 1105–1112.

    CAS  Google Scholar 

  20. Mitchell, A.C., and Nellis, W.J., (1982), Equation of state and electrical conductivity of water and ammonia shocked to the 100 GPa pressure range, J. Chem. Phys. 76, 6273–6281.

    Article  CAS  Google Scholar 

  21. Marshall, W.L., and Franck, E.U., (1981), Ion product of water substance, 0-1000 °C, 1-10.000 bar, J. Phys. Chem. Ref. Data, 10, 295–304.

    Article  CAS  Google Scholar 

  22. Ritzert, G., and Franck, E.U., (1968), Elektrische Leitfähigkeit wässriger Lösungen bei hohen Temperaturen und Drücken bis 750 °C und 6 kbar. KCl BaCl2, Ba(OH)2, MgSO4, Ber. Bunsenges. Physikal Chem. 72, 798–808.

    CAS  Google Scholar 

  23. Mangold, K., and Franck, E.U., (1969), Elektrische Leitfähigkeit wässriger Lösungen bei hohen Temperaturen und Drücken II. Alkalichloride in Wasser bis 1000 °C und 12 kbar, Ber. Bunsenges. Physikal Chem. 73, 21–27.

    CAS  Google Scholar 

  24. Fuoss, R.M., and Accascina, F., (1959), Electrolytic Conductance, Interscience Publishers, New York.

    Google Scholar 

  25. Hensel, F., and Franck, E.U., (1966) Elektrische Leitfähigeit und Dichte von überkritischem gasförmigem Quecksilber unter hohen Drücken, Ber. Bunsenges. Physikal Chem. 70, 1154–1161. Franck, E.U., Hensel, F., (1966), Metallic Conductance of Supercritical Mercury Gas at High Pressures, Phys. Rev. 147, 109-110.

    CAS  Google Scholar 

  26. W. Freyland and F. Hensel, The Metallic and Non-Metallic States of Matter, P.P. Edwards, C.N.R. Rao, Eds. Taylor and Francis, London (1985).

    Google Scholar 

  27. Keller, E., and Franck, E.U., (1997), Electric Conductivity of Supercritical Cesium-Cesium Hydride Mixtures of High Temperatures and Pressures, Ber. Bunsenges. Physikal Chem. 101, 821–830.

    Article  CAS  Google Scholar 

  28. M.A. Bredig, in Molten Salt Chemistry (M. Blander, Ed.), Interscience, New York, (1964), p. 367

    Google Scholar 

  29. Burnham, C.W., Holloway, J.R., and Davis, N.F., (1969), The specific volume of water in the range 1000 to 8900 bars, 20 ° to 900 °C, Amer. J. Sci. 276A, 70.

    Google Scholar 

  30. Maier, S., and Franck, E.U., (1966), Die Dichte des Wassers bis 850 °C und 6000 bar, Ber. Bunsenges. Physikal. Chem. 70, 639–645.

    CAS  Google Scholar 

  31. Köster, H., and Franck, E.U., (1969), Das spezifische Volumen des Wassers bei hohen Drücken bis 600 °C und 10 kbar, Ber. Bunsenges. Physikal. Chem. 73, 716–722.

    Google Scholar 

  32. Dudziak, K.H., and Franck, E.U., (1966), Messungen der Viskosität des Wassers bis 560 °C und 3500 bar, Ben Bunsenges. Physikal Chem. 70, 1120–1128.

    CAS  Google Scholar 

  33. Lamb, W., Hoffman, G.A.; and Jonas, J., (1981), Self-diffusion in compressed supercritical water, J. Chem. Phys. 74, 6875–6880.

    Article  CAS  Google Scholar 

  34. Butenhoff, T., Goemans, M., and Buelow, S., (1996), Mass diffusion coefficients and thermal diffusivity in concentrated hydrothermal NaNO3 solutions, J. Phys. Chem. 100, 5982–5992.

    Article  CAS  Google Scholar 

  35. Dietz, F.J., de Groot, J.J., and Franck, E.U., (1981), The thermal conductivity of water to 250 °C and 350 MPa, Ber. Bunsenges. Physikal Chem. 85, 1005–1009.

    Article  CAS  Google Scholar 

  36. Kohl, W., Lindner, H.A., and Franck, E.U., (1991), Raman spectra of water to 400 °C and 3000 bar, Ber. Bunsenges. Physikal Chem. 95, 1586–1593.

    Article  CAS  Google Scholar 

  37. Franck, E.U., and Roth, K.H., (1967), Infrared absorption of HDO in water at high pressures and temperatures, Disc. Far. Soc. 43, 108–114.

    Article  Google Scholar 

  38. Heger, K., Uematsu, M., and Franck, E.U., (1980), The static dielectric constant of water at high pressures and temperatures to 500 MPa and 550 °C, Ber. Bunsenges. Phys. Ckem. 84, 758–762.

    Article  CAS  Google Scholar 

  39. Deul, R., and Franck, E.U., (1991) The static dielectric constant of the water-benzene mixture system to 400 °C and 2800 bar, Ber. Bunsenges. Phys. Chem. 95, 847–853.

    Article  CAS  Google Scholar 

  40. Uematsu, M., and Franck, E.U., (1980), Static dielectric constant of water and steam, J. Phys. Chem. Ref. Data, 9; 1291–1306.

    Article  CAS  Google Scholar 

  41. Franck, E.U., Rosenzweig, S., and Christoforakos, M., (1990), Calculation of the dielectric constant of water to 1000 °C and very high pressures, Ber. Bunsenges. Phys. Chem. 94, 199–203.

    Article  CAS  Google Scholar 

  42. Fernandez, D.P., Goodwin, A.R.H., Lemmon, E.W., Levelt Sengers, J.M.H., and Williams, C.R.J., (1997) A formulation for the static permittivity of water and steam at temperatures to 873 K at pressures up to 1200 MPa., J. of Phys. and Chem. Ref. Data 26, 1125–1166.

    Article  CAS  Google Scholar 

  43. R.A. Laudise, and J.W. Nielsen, ((1969), Hydrothermal Crystal Growth in Seite and Tumbull (eds.), “Solid State Physics“, Academic Press, N.Y.

    Google Scholar 

  44. Franck, E.U., (1956), Zur Lösüchkeit fester Stoffe in verdichteten Gasen, Z. Physikal. Chem., N.F. 6, 345–355.

    Article  CAS  Google Scholar 

  45. Lüdemann, H.D., and Franck, E.U., (1967), Absorptionsspektren bei hohen Drücken und Temperaturen I. Wässrige Co(II)-und Ni(II)-halogenid-Lungen bis zu 500 °C and 6 kbar, Ber. Bunsenges. Physikal. Chemie 71, 455–460.

    Google Scholar 

  46. Lüdemam, H.D., and Franck, E.U., (1968), Absorptionsspektren bei hohen Drücken und Temperaturen II. Co(II)-und Ni(II)-halogenide in konzentrierten Alkailsatz-Lösungen, Ber. Bunsenges. Physikal. Chemie 72, 514–523.

    Google Scholar 

  47. Lüdemann, H.D., and Franck, E.U., (1968), Absorptionsspektren bei hohen Drücken III. Wässrige SO2-Lösungen bei 25 °C bis zu 6 kbar, Ber. Bunsenges. Physikal. Chem. 72, 523–525.

    Google Scholar 

  48. Rössling, G., and Franck, E.U., (1983), Solubility of anthracene in dense gases and liquids to 200 °C and 2000 bar, Ber. Bunsenges. Physikal. Chem. 87, 882–890.

    Article  Google Scholar 

  49. Ebeling, H., and Franck, E.U., (1984), Spectroscopic determination of caffeine solubility in supercritical carbon dioxide, Ber. Bunsenges. Phys. Chem. 88, 862–865.

    Article  CAS  Google Scholar 

  50. Christoforakos, M., and Franck, E.U., (1986), An equation of state for binary fluid mixtures to high temperatures and to high pressures, Ber. Bunsenges. Phys. Chem. 90, 780–789.

    Article  CAS  Google Scholar 

  51. Chao, K.C., and Robinson, R.L., (1986), Eds., Equation of State. Theory and Applications, ACS Symposium Series, Vol. 300, Amer. Chem. Soc.

    Google Scholar 

  52. Sengers, J.V. Kayser, R.F., Peters,C.J., and White, H.J., (2000), Eds. Equations of State for Fluids, Backwell Oxford.

    Google Scholar 

  53. Tsiklis, D.S., Linshits, L.R., and Guryunora, N.P., (1965), Phase Equilibria in the System Ammonia-water, Zh. Fiz. Kim. 39, 2978.

    CAS  Google Scholar 

  54. Seward, T.M., and Franck, E.U., (1981), The system hydrogen-water up to 440 °C and 2500 bar pressure, Ber. Bunsenges. Physik. Chem. 85, 2–7.

    Article  CAS  Google Scholar 

  55. Sretenskaja, N.G., Sadus, R.J., and Franck, E.U., (1995), High pressure phase equilibria and critical curve of the water-helium system to 2000 MPa and 723 K, J. Phys. Chem. 99, 4273–4277.

    Article  CAS  Google Scholar 

  56. Mather, A.N., Sadus, R.J., and Franck, E.U., (1993), Phase equilibria in (water+krypton) at pressures from 31 MPa to 273 MPa and temperatures from 610 K to 660 K and in (water-neon) from 45 MPa to 255 MPa from 660 K to 700 K, J. Chem. Thermodynamics, 25, 771–779.

    Article  CAS  Google Scholar 

  57. Wu, G., Heilig, M., Lentz, H., and Franck, E.U., (1990), High presure phase equilibria of the waterargon system, Ber. Bunsenges. Physikal Chemie 94, 24–27.

    Article  CAS  Google Scholar 

  58. Mather, A.N., Sadus, R.J., and Franck, E.U., (1993), Phase equilibria in (water-krypton) at pressures from 31 MPa to 273 MPa and temperatures from 610 K to 660 K and in (water-neon) from 45 MPa to 255 MPa from 660 K to 700 K, J. Chem. Thermodynamics, 25, 771–779.

    Article  CAS  Google Scholar 

  59. Franck, E.U., Lentz, H., and Welsch, H., (1974), The system water-xenon at high pressures and temperatures, Z. Physikal Chemie, N.F. 93, 95–108.

    Article  CAS  Google Scholar 

  60. Wei, Y.S., Sadus, R.J., and Franck, E.U., (1996), Binary mixtures of water + five noble gases: comparison of binodal and critical curves at high pressures, Fluid Phase Equil. 123, 1–15.

    Article  CAS  Google Scholar 

  61. Japas, M.L., and Franck, E.U., (1985), High pressure phase equilibria and PVT-data of the water-nitrogen system to 673 K and 250 MPa, Ber. Bunsenges. Phys. Chem. 89, 783–800.

    Google Scholar 

  62. Japas, M.L., and Franck, E.U., (1985), High pressure phase equilibria and PVT-data of the water oxygen system including water-air to 673 K and 250 MPa, Ber. Bunsenges. Phys. Chem. 89, 1268–1275.

    Article  CAS  Google Scholar 

  63. Tian, Yiling, Michelberger, Th., and Franck, E.U.; (1991), High pressure phase equilibria and critical curves of (water-n-butane) and (water-n-hexane) to temperatures of 700 K and pressures to 300 MPa, J. Chem. Thermodynamics 23, 105–112.

    Article  CAS  Google Scholar 

  64. Shmonov, V.M., Sades, R.J., and Franck, E.U., (1993), High pressure phase equilibria and supercritical pVT-data of the binary water-methane system to 723 K and 200 MPa, J. Phys. Chem. 97, 9054–9059.

    Article  CAS  Google Scholar 

  65. Brunnen E., (1990), Fluid mixtures at high pressures DC phase separation and critical phenomena in 23 (n-alkane-water) mixtures, J. Chem. Thermodynamics, 22, 335–353.

    Article  Google Scholar 

  66. Neichel, M., and Franck, E.U., (1996), Critical curves and phase equilibria of water-n-alkane binary systems to high pressures and temperatures, J. Supercritical Fluids, 9, 69–74.

    Article  CAS  Google Scholar 

  67. Alwani, Z., and Schneider, G.M., (1969), Phasengleicttgewiclite, kritische Erscheinungen und PVT-Daten in Mischungen von Wasser mit araniatiscfien Kohlenwasserstoffen Ms 420 °C und 2200 bar, Ber. Bunsenges. Phys.Chem. 73, 301–794.

    Google Scholar 

  68. Franck, E.U., and Tödheide, K., (1959), Themische Eigenschaften überkritischer Mischungen von Kohlendioxid und Wasser Ms zu 750 °C und 2000 atm., Z. Physikal Chem., N.F.; 22, 233–245.

    Google Scholar 

  69. Math, A.E, and Franck, E.U., (1992), Phase equilibria in the system carbon dioxide-water at elevated pressures, J. Physical. Chem. 96, 6–8.

    Article  Google Scholar 

  70. Heilig, M., and Franck, E.U., (1989), Calculation of thermodynamic properties of binary fluid mixtures to high temperatures and high pressures, Ber. Bunsenges. Phys. Chem. 93, 898–905.

    Article  CAS  Google Scholar 

  71. Heilig, M., and Franck, E.U., (1990), Phase equilibria of muhicomponent fluid systems to high pressures and temperatures, Ber. Bunsenges. Phys. Chem. 94, 27–35.

    Article  CAS  Google Scholar 

  72. Gehrig, M., Lente, H., and Franck, E.U., (1986), The system water-carhon dioxide-sodium chloride to 773 K and 300 MPa, Ber. Bunsenges. Phys. Chem. 90, 525–533.

    Article  CAS  Google Scholar 

  73. Krader, Th., and Franck, E.U., (1987), The ternary systems H2O-CH4-NaCl and H2O-CH4-CaCl2 to 800 K and 250 MPa, Ber. Bunsenges. Phys. Chem. 91, 627–634.

    CAS  Google Scholar 

  74. Michelbefger, Th., and Franck, E.U., (1990), Ternary systems water-alkane-sodium chloride and methanolmethane-sodium bromide to high pressures and temperatures, Ber. Bunsenges. Phys. Chem. 94, 1134–1143.

    Article  Google Scholar 

  75. Kerechbaum, S., and Franck, E.U., (1995), High pressure supercritical PVT-data of water-sodium hydroxide mixtures and of liquid sodium hydroxide to 673 K and 400 MPa, Ber. Bunsenges. Phys. Chem. 99, 624–632.

    Article  Google Scholar 

  76. Eberz, A., and Franck, E.U., (1995), High pressure electrolyte conductivity of the concentrated fluid water-sodium hydroxide system to 400 °C and 3000 bar, Ber. Bunsenges. Phys. Chem. 99, 1091–1103.

    CAS  Google Scholar 

  77. Hirth, T., and Franck, E.U., (1993), Oxidation and hydrothermolysis of hydrocarbons in supercritical water at high pressures, Ber. Bunsenges. Phys. Chem. 97, 1091–1098.

    Article  CAS  Google Scholar 

  78. Schilling, W., and Franck, E.U., (1988), Combustion and diffusion flames at high pressures to 2000 bar, Ber. Bunsenges. Phys. Chem. 92, 631–636.

    CAS  Google Scholar 

  79. Pohsner, G.M., and Franck, E.U., (1994), Spectra and temperatures of diffusion flames at high pressures to 1000 bar, Ber. Bunsenges. Phys. Chem. 98, 1082–1090.

    Article  CAS  Google Scholar 

  80. Franck, E.U., and Spalthoff, W., (1956), Die kritischen Daten des Fluorwasserstoffs I. Spezifische Wärme, Dampfdruck und Dichte bis 300 °C und 300 bar, Z. Elektrochemie (Ber. Bunsenges. Physik. Chemie), 61, 348–357.

    Google Scholar 

  81. Franck, E.U., Wiegand, G, and Gerhardt, R.D., (1999), The density of hydrogen fluoride at high pressures to 973 K and 200 MPa, J. of Supercritical Fluids. Accepted for 1999 (in press).

    Google Scholar 

  82. Wiegand, G.; and Franck, E.U., (1994), Interfacial tension between water and non-polar fluids up to 473 K and 2800 bar, Ber. Bunsenges. Phys. Chemie 98, 809–817.

    Article  CAS  Google Scholar 

  83. E.U. Franck, (1987), Fluids at high pressures and temperatures, J. Chem. Thermodynamics 19, 225–242.

    Article  CAS  Google Scholar 

  84. R.W. Shaw, R.B. Brill, A.A. Clifford, C.A. Eckert, E.U. Franck (1991), Supercritical Water, Chem. and Eng. News 69, 51, p. 26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Franck, E.U. (2000). Supercritical Water and Other Fluids — A Historical Perspective. In: Kiran, E., Debenedetti, P.G., Peters, C.J. (eds) Supercritical Fluids. NATO Science Series, vol 366. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3929-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3929-8_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6236-4

  • Online ISBN: 978-94-011-3929-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics