Skip to main content

Quantitative Histochemical and Cytochemical Assays

  • Chapter
Histochemical and Immunohistochemical Techniques

Abstract

Histochemistry and cytochemistry are important tools for the analysis of toxic effects of xenobiotics because changes in metabolic functions can be directly related to the morphology of a tissue or the type of cell involved. A toxin may affect one type of cell which represents only a small percentage of the total volume of a tissue. Such effects will be missed when biochemical analysis is performed on a homogenate. However, localization of metabolic functions or cell constituents in itself is not sufficient and is only part of the picture besides quantitative information of the chemical processes involved. The overall goal of histochemistry and cytochemistry is to achieve understanding of the localization and the quantification of constituents and metabolic functions of tissues and cells and their changes under various conditions. Quantitative histochemistry and cytochemistry fill the gap between biochemical analysis (which provides virtually no topographic information) and histochemical or cytochemical localization which yields little quantitative information. The goal of quantitative histochemistry and cytochemistry is to increase localization of what can be quantified and to increase quantification of what can be localized (Glick, 1977).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ACOSTA, D. and ANUFORO, D. (1976) Cytotoxicity of caffeine in cultured heart cells. Toxicology, 6, 225–233.

    Article  PubMed  CAS  Google Scholar 

  • ACOSTA, D. and WENZEL, D.G. (1975) A permeability test for the study of mitochondrial injury in in vitro cultured heart muscle and endothelioid cells. Histochem. J., 7, 45–56.

    Article  PubMed  CAS  Google Scholar 

  • ALTMAN, F.P. (1975) Quantitation in histochemistry: a review of some commercially available microdensitometers. Histochem. J., 7, 375–395.

    Article  PubMed  CAS  Google Scholar 

  • ALTMAN, F.P. (1980) Tissue stabilizer methods in histochemistry. In: Trends in Enzyme Histochemistry and Cytochemistry. (D. Evered and M. O’Connor, eds.) Excerpta Medica, Amsterdam, pp. 81–101.

    Google Scholar 

  • ALTMAN, F.P. (1982) Microphotometry of enzyme reactions in histochemistry. Acta Histochem., Suppl. 26, 145–155.

    CAS  Google Scholar 

  • ALTMAN, F.P., BITENSKY, L., BUTCHER, R.G. and CHAYEN, J. (1970) Integrated cellular chemistry applied to malignant cells. In: Cytology Automation. (D.M.D. Evans, ed.). Livingstone, Edinburgh, pp. 82–97.

    Google Scholar 

  • ALTMAN, F.P., MOORE, D.S. and CHAYEN, J. (1975) The direct measurement of cytochrome P450 in unfixed tissue sections. Histochemistry, 41, 227–232.

    Article  PubMed  CAS  Google Scholar 

  • BITENSKY, L. (1980) Microdensitometry. In: Trends in Enzyme Histochemistry and Cytochemistry. (D. Evered and M. O’Connor, eds.). Excerpta Medica, Amsterdam, pp. 181–202.

    Google Scholar 

  • BITENSKY, L., BUTCHER, R.G. and CHAYEN, J. (1973) Quantitative cytochemistry in the study of lysosomal function. In: Lysosomes in Biology and Pathology, Vol. 3., (J.T. Dingle, ed.). North Holland Publishing Company, Amsterdam, pp. 465–510.

    Google Scholar 

  • BRIDGES, J.W., FRY, J.R. and JONES, C.A. (1979) Toxicological studies on isolated rat hepatocytes. In: Quantitative Cytochemistry and its Applications. (J.R. Pattison, L. Bitensky and J. Chayen, eds.). Academic Press, London, pp. 149–159.

    Google Scholar 

  • BROWNE, R.M. and TYAS, M.J. (1979) Toxicological studies with dental filling materials. In: Quantitative Cytochemistry and its Applications. (J.R. Pattison, L. Bitensky and J. Chayen, eds.). Academic Press, London, pp. 175–185.

    Google Scholar 

  • BUTCHER, R.G. (1970) Studies on succinate oxidation. 1. The use of intact tissue sections. Exp. Cell Res., 60, 54–60.

    Article  PubMed  CAS  Google Scholar 

  • BUTCHER, R.G. (1971a) The chemical determination of section thickness. Histochemie, 28, 131–136.

    PubMed  CAS  Google Scholar 

  • BUTCHER, R.G. (1971b) The effect of phenobarbitone on the production of type I hydrogen from reduced nicotinamide-adenine phosphate in different regions of the liver lobule. Biochem. J., 125, 22–23P.

    Google Scholar 

  • BUTCHER, R.G. (1972) Precise cytochemical measurement of neotetrazolium formazan by scanning and integrating microdensitometry. Histochemie, 32,171–190.

    Article  PubMed  CAS  Google Scholar 

  • BUTCHER, R.G. (1984) Reaction rate studies of glucose-6-phosphate dehydrogenase in rat tracheal epithelium; the effect of section thickness. Histochemistry, 81, 567–572.

    Article  PubMed  CAS  Google Scholar 

  • BUTCHER, R.G. and ALTMAN, F.P. (1973) Studies on the reduction of tetrazolium salts. II. The measurement of the half reduced and fully reduced formazans of neotetrazolium chloride in tissue sections. Histochemie, 37, 351–363.

    Article  PubMed  CAS  Google Scholar 

  • BUTCHER, R.G. and CHAYEN, J. (1968) The value of intact tissue sections for studying metabolic inter-actions between the cytoplasm and mitochondria. Exp. Cell Res., 49, 656–665.

    Article  PubMed  CAS  Google Scholar 

  • BUTCHER, R.G. and VAN NOORDEN, C.J.F. (1985) Reaction rate studies of glucose-6-phosphate dehydrogenase activity in sections of rat liver using four tetrazolium salts. Histochem. J., 17, 993–1008.

    Article  PubMed  CAS  Google Scholar 

  • CASPERSSON, T., LOMAKKA, G. and SVENSSON G. (1957) Acoordinated set of instruments for optical quantitative high resolution cytochemistry. Exp. Cell Res., Suppl. 4, 9–24.

    Google Scholar 

  • CHAYEN, J. (1978) Microdensitometry. In: Biochemical Mechanisms of Liver Injury. (T.F. Slater, ed.). Academic Press, London, pp. 257–291.

    Google Scholar 

  • CHAYEN, J. (1984) Quantitative cytochemistry: a precise form of cellular biochemistry. Biochem. Soc. Trans., 12, 887–898.

    PubMed  CAS  Google Scholar 

  • CHAYEN, J., ALTMAN, F.P. and BUTCHER, R.G. (1973) The effect of certain drugs on the production and possible utilization of reducing equivalents outside the mitochondria. In: Fundamentals of Cell Pharmacology. (S. Dikstein, ed.). C.C. Thomas, Springfield, pp. 196–230.

    Google Scholar 

  • CHAYEN, J., BITENSKY, L., JOHNSTONE, J.J., GOODING, P.E. and SLATER, T.F. (1979) The application of microspectrophotometry to the measurement of cytochrome P450. In: Quantitative Cytochemistry and its Applications. (J.R. Pattison, L. Bitensky and J. Chayen, eds.). Academic Press, London, pp. 129–137.

    Google Scholar 

  • CHIECO, P. and BOOR, P.J. (1984) Quantitative histochemistry in pathology and toxicology. An evaluation of the original two-wavelength method of Ornstein. Lab. Invest., 50, 355–362.

    PubMed  CAS  Google Scholar 

  • CHIECO, P., HRELIA, P., CANDELETTI, S., FERRI, S. and CANTELLIFORTI, G. (1984) Methadone affects the histochemical pattern of xenobiotic-metabolizing enzymes in the liver of pregnant rats. Arch. Toxicol., Suppl. 7, 261–265.

    Article  CAS  Google Scholar 

  • CHIECO, P., MOSLEN, M.T. and REYNOLDS, E.S. (1982) Histochemical evidence that plasma and mitochondrial membranes are primary foci of hepatocellular injury caused by 1,1-dichloroethylene. Lab. Invest., 46, 413–421.

    PubMed  CAS  Google Scholar 

  • CHIECO, P., NORMANNI, P., TREINEN MOSLEN, M. and MALTONI, C. (1986) Quantitative histochemistry of benzaldehyde dehydrogenase in hepatocellular carcinomas of vinyl chloride-treated rats. J. Histochem. Cytochem., 34, 151–158.

    Article  PubMed  CAS  Google Scholar 

  • DEELEY, E.M. (1955) An integrating microdensitometer for biological cells. J. Sci. Instrum., 32, 263–267.

    Article  Google Scholar 

  • DEN TONKELAAR, E.M. and VAN DUIJN, P. (1964) Photographic colorimetry as a quantitative cytochemical method. I. Principles and practice of the method. Histochemie, 4, 1–9.

    Article  Google Scholar 

  • DOLBEARE, F.A. (1981) Fluorometric quantification of specific chemical species in single cells. In: Modern Fluorescence Spectroscopy, Vol, 3., (E.L. Wehry, ed.). Plenum Publishing Corporation, New York, pp. 251–293.

    Google Scholar 

  • EVANS, A.W., JOHNSON, N.W. and BUTCHER, R.G. (1980) A quantitative cytochemical study of three oxidative enzymes during experimental oral carcinogenesis in the hamster. Br. J. Oral Surg., 18, 3–16.

    Article  PubMed  CAS  Google Scholar 

  • FUKUDA, M., BÖHM, N. and FUJITA, S. (1978) Cytophotometry and its biological application. Progr. Histochem. Cytochem., 11/1, 1–119.

    Article  CAS  Google Scholar 

  • FULTON, A.B. (1982) How crowded is the cytoplasm? Cell, 30, 345–347.

    Article  PubMed  CAS  Google Scholar 

  • GALJAARD, H. (1980) Quantitative cytochemical analysis of (single) cultured cells. In: Trends in Enzyme Histochemistry and Cytochemistry. (D. Evered and M. O’Connor, eds.). Excerpta Medica, Amsterdam, pp. 161–180.

    Google Scholar 

  • GALJAARD, H., HOOGEVEEN, A., KEIJZER, W., DE WIT-VERBEEK, E. and VLEK-NOOT, C. (1974a) The use of quantitative cytochemical analyses in rapid prenatal detection and somatic cell genetic studies of metabolic diseases. Histochem. J., 6, 491–509.

    Article  PubMed  CAS  Google Scholar 

  • GALJAARD, H., VAN HOOGSTRAATEN, J.J., DE JOSSELIN-DE JONG, J.J. and MULDER, M.P. (1974b) Methodology of the quantitative cytochemical analysis of single or small numbers of cultured cells. Histochem. J., 6, 409–429.

    Article  PubMed  CAS  Google Scholar 

  • GLICK, D. (1961) Quantitative Chemical Techniques of Histo- and Cytochemistry. Vol. 1, Wiley-Interscience, New York.

    Google Scholar 

  • GLICK, D. (1963) Quantitative Chemical Techniques of Histo- and Cytochemistry. Vol. 2, Wiley-Interscience, New York.

    Google Scholar 

  • GLICK, D. (1977) The contribution of microchemical methods of histochemistry to the biological sciences. J. Histochem. Cytochem., 25, 1087–1101.

    Article  PubMed  CAS  Google Scholar 

  • GOLDSTEIN, D.J. (1981) Errors in microdensitometry. Histochem. J., 13, 251–267.

    Article  PubMed  CAS  Google Scholar 

  • GOODING, P.E., CHAYEN, J., SAWYER, B. and SLATER, T.F. (1978) Cytochrome P-450 distribution in rat liver and the effect of phenobarbitone. Chem.-Biol. Interact., 20, 299–310.

    Article  PubMed  CAS  Google Scholar 

  • HALLIWELL, B. and GUTTERIDGE, J.M.C. (1984) Free Radicals in Biology and Medicine. Clarendon Press, Oxford.

    Google Scholar 

  • HARDIE, G. (1982) Kinetic behavior of membrane-bound, irreversible enzyme systems: experimental and theoretical considerations. J. Histochem. Cytochem., 30, 1083–1086.

    Article  PubMed  CAS  Google Scholar 

  • HAZELHOFF ROELFZEMA, W., TOHYAMA, C., NISHIMURA, H., NISHIMURA, N. and MORSELT, A.F.W. (1989) Quantitative immunohistochemistry of metallothionein in rat placenta. Histochemistry, 90, 365–369.

    Article  PubMed  CAS  Google Scholar 

  • JAMES, J. (1983) Developments in photometric techniques in static and flow systems from 1960 to 1980: a review, including some personal observations. Histochem. J., 15, 95–110.

    Article  PubMed  CAS  Google Scholar 

  • JAMES, J., BOSCH, K.S., ARONSON, D.C. and HOUTKOOPER, J.M. (1990) Sirius red histophotometry and spectrophotometry of sections in the assessment of the collagen content of rat liver and its application in growing rat liver. Liver, 10, 1–5.

    Article  PubMed  CAS  Google Scholar 

  • JONGES, G.N. and VAN NOORDEN, C.J.F. (1989) In situ kinetic parameters of glucose-6-phosphate dehydrogenase and phosphogluconate dehydrogenase in different areas of the rat liver acinus. Histochem. J., 21, 585–594.

    Article  PubMed  CAS  Google Scholar 

  • JONGKIND, J.F., PLOEM, J.S., REUSER, A.J.J. and GAUAARD, H. (1974) Enzyme assays at the single cell level using a new type of microfluorimeter. Histochemistry, 40, 221–229.

    Article  PubMed  CAS  Google Scholar 

  • KAPLOW, L.S. (1977) The application of cytochemistry to automation. J. Histochem. Cytochem., 25, 990–1000.

    Article  PubMed  CAS  Google Scholar 

  • KAPLOW, L.S. (1979) Leukocyte enzyme assays by flow cytophotometry. Adv. Exp. Med. Biol., 121(A), 211–221.

    PubMed  CAS  Google Scholar 

  • KAPLOW, L.S. and LERNER, E. (1977) Computer-assisted monocyte esterase assay by flow-cytophotometry. J. Histochem. Cytochem., 25, 590–596.

    Article  PubMed  CAS  Google Scholar 

  • KAPLOW, L.S., DAUBER, H. and LERNER, E. (1976) Assessment of monocyte esterase activity by flow cytophotometry. J. Histochem. Cytochem., 24, 363–372.

    Article  PubMed  CAS  Google Scholar 

  • KUGLER, P. (1981) Kinetic and morphometric measurements of enzyme reactions in tissue sections with a new instrumental setup. Histochemistry, 71, 433–449.

    Article  PubMed  CAS  Google Scholar 

  • LAWRENCE, G.M., BEESLEY, A.C.H. and MATTHEWS, J.B. (1989) The use of continuous monitoring and computer-assisted image analysis for the histochemical quantitation of hexokinase activity. Histochem. J., 21, 557–564.

    Article  PubMed  CAS  Google Scholar 

  • LIND, C. and ERNSTER, L. (1974) A possible relationship between DT-diaphorase and the aryl hydrocarbon hydroxylase system. Biochem. Biophys. Res. Commun., 56, 392–400.

    Article  PubMed  CAS  Google Scholar 

  • LIVINGSTONE, D.R., MOORE, M.N., LOWE, D.M., NASCI, C. and FARRAR, S.V. (1985) Responses of the cytochrome P-450 monooxygenase system to diesel oil in the common mussel, Mytilus edulis L., and the periwinkle, Littorina littorea L. Aquatic Toxicol., 7, 79–91.

    Article  CAS  Google Scholar 

  • LOWRY, O.H. and PASSONNEAU, J.V. (1972) A Flexible System of Enzymatic Analysis. Academic Press, New York.

    Google Scholar 

  • LOWRY, O.H., PASSONNEAU, J.V., SCHULZ, D.W. and ROCK, H.K. (1961) The measurement of pyridine nucleotides by enzymatic cycling. J. Biol. Chem., 236, 2746–2755.

    PubMed  CAS  Google Scholar 

  • MINTON, A.P. (1983) The effect of volume occupancy upon the thermodynamic activity of proteins: some biochemical consequences. Molec. Cell. Biochem., 55, 119–140.

    Article  PubMed  CAS  Google Scholar 

  • MOORE, M.N. (1988) Cytochemical responses of the lysosomal system and NADPH-ferrihemoprotein reductase in molluscan digestive cells to environmental and experimental exposure to xenobiotics. Mar. Ecol. Prog. Ser., 46, 81–89.

    Article  CAS  Google Scholar 

  • MOORE, M.N. and CLARKE K.R. (1982) Use of microstereology and quantitative cytochemistry to determine the effects of crude oil-derived aromatic hydrocarbons on lysosomal structure and function in a marine bivalve mollusc, Mytilus edulis. Histochem. J., 14, 713–718.

    CAS  Google Scholar 

  • MOORE, M.N. and VIARENGO, A. (1987) Lysosomal membrane fragility and catabolism of cytosolic proteins: evidence for a direct relationship. Experientia, 43, 320–323.

    Article  PubMed  CAS  Google Scholar 

  • MOORE, M.N., LIVINGSTONE, D.R., WIDDOWS, J., LOWE, D.M. and PIPE, R.K. (1987a) Molecular, cellular and physiological effects of oil-derived hydrocarbons on molluscs and their use in impact assessment. Phil. Trans. R. Soc. Lond. B, 316, 603–623.

    Article  CAS  Google Scholar 

  • MOORE, M.N., PIPE, R.K., FARRAR, S.V., THOMSON, S. and DONKIN, P. (1987b) Lysosomal and microsomal responses to oil-derived hydrocarbons in Littorina littorea. In: Oceanic Processes in Marine Pollution, Vol. 1. (J.M. Capuzzo and D.R. Kester, eds.). Robert Krieger Publishing Company, Malabar, Florida, pp. 89–96.

    Google Scholar 

  • MORSELT, A.F.W. and VAN STRAALEN, N.M. (1986) Histochemical staining of cadmium thiolate clusters in livers of rats treated chronically with cadmium. Histochemistry, 84, 45–47.

    Article  PubMed  CAS  Google Scholar 

  • MORSELT, A.F.W., BROEKAERT, D., JONGSTRA-SPAAPEN, E.J. and COPIUS PEEREBOOM-STEGEMAN, J.H.J. (1984) Histochemical changes in protein disulphide bonds in rat liver and kidney after chronic cadmium administration, and the possible relation to metallothionein. Arch. Toxicol., 55, 155–160.

    Article  PubMed  CAS  Google Scholar 

  • MORSELT, A.F.W., LEENE, W., DE GROOT, C., KIPP, J.B.A., EVERS, M., ROELOFSEN, A.M. and BOSCH, K.S. (1988) Differences in immunological susceptibility to cadmium toxicity between two rat strains as demonstrated with cell biological methods. Effect of cadmium on DNA synthesis of thymus lymphocytes. Toxicology, 48, 127–139.

    Article  PubMed  CAS  Google Scholar 

  • MORSELT, A.F.W., SUZUKI, K.T., ROELOFSEN, A.M., HAZELHOFF-ROELFZEMA, W. and COPIUS PEEREBOOM-STEGEMAN, J.H.J. (1986) Increase of cadmium-thiolate clusters as a measure of morphological non-toxic cadmium accumulation in the rat liver. Toxicology, 41, 33–41.

    Article  PubMed  CAS  Google Scholar 

  • MORSELT, A.F.W., VAN DE HAMER, C.J.A., PRENSEN, L., JONGSTRAS-PAAPEN, E.J., COPIUS PEEREBOOM-STEGEMAN, J.H.J. and BOSCH, K.S. (1985) Large increase in disulphide bonds containing cytosol proteins after chronic cadmium administration, estimated in isolated rat liver cells. Histochemistry, 83, 227–229.

    Article  PubMed  CAS  Google Scholar 

  • MUELLER-KLIESER, W., WALENTA, S., PASCHEN, W., KALLINOWSKI, F. and VAUPEL, P. (1988) Metabolic imaging in microregions of tumors and normal tissues with bioluminescenee and photon counting. J. Natl. Cancer Inst., 80, 842–848.

    Article  PubMed  CAS  Google Scholar 

  • NEUHOFF, V. (1973) Micromethods in Molecular Biology. Chapman and Hall, London.

    Book  Google Scholar 

  • NOTT, J.A. and MOORE, M.N. (1987) Effects of polycyclic aromatic hydrocarbons on molluscan lysosomes and endoplasmic reticulum. Histochem. J., 19, 357–368.

    Article  PubMed  CAS  Google Scholar 

  • ORNSTEIN, L. (1952) The distributional error in microspectrophotometry. Lab. Invest., 1, 250–265.

    PubMed  CAS  Google Scholar 

  • OUTLAW, W.H., SPRINGER, S.A. and TARCZYNSKI, M.C. (1985) Histochemical technique. A general method for quantitative enzyme assays of single cell “extracts” with a time resolution of seconds and a reading precision of femtomoles. Plant Physiol., 77, 659–666.

    Article  PubMed  CAS  Google Scholar 

  • PAGLIARO L. and LANSING TAYLOR, D. (1988) Aldolase exists in both the fluid and solid phases of cytoplasm. J. Cell Biol., 107, 981–991.

    Article  PubMed  CAS  Google Scholar 

  • PASCHEN, W. (1985) Regional quantitative determination of lactate in brain sections. A bioluminescent approach. J. Cerebr. Blood Flow Metab., 5, 609–612.

    Article  CAS  Google Scholar 

  • PASCHEN, W., NIEBUHR, I. and HOSSMANN, K.A. (1981) A bioluminescenee method for the demonstration of regional glucose distribution in brain slices. J. Neurochem., 36, 513–517.

    Article  PubMed  CAS  Google Scholar 

  • PATAU, K. (1952) Absorption microphotometry of irregular-shaped objects. Chromosoma, 5, 341–362.

    Article  PubMed  CAS  Google Scholar 

  • PEARSE, A.D. and MARKS, R. (1978) Aquantitative histochemical study of three oxidative enzymes in solar keratoses and Bowen’s disease. Histochem. J., 10, 621–631.

    Article  PubMed  CAS  Google Scholar 

  • POMPELLA, A., MAELLARO, E., CASINI, A.F. and COMPORTI, M. (1987) Histochemical detection of lipid peroxidation in the liver of bromobenzene-poisoned mice. Am. J. Pathol., 129, 295–301.

    PubMed  CAS  Google Scholar 

  • RAAP, A.K. (1986) Localization properties of fluorescence cytochemical enzyme procedures. Histochemistry, 84, 317–321.

    Article  PubMed  CAS  Google Scholar 

  • RAAP, A.K. and VAN DUIJN, P. (1983) Studies on the phenazine methosulphate-tetrazolium capture reaction in NAD(P)+-dependent dehydrogenase cytochemistry. II. A novel hypothesis for the mode of action of PMS and a study of the properties of reduced PMS. Histochem. J., 15, 881–893.

    Article  PubMed  CAS  Google Scholar 

  • SICKLES, D.W., MCLENDON, R.E. and ROSENQUIST, T.H. (1982) Alternative method for quantitative enzyme histochemistry of muscle fibers. Application of photographic densitometry combined with atomic absorption spectrophotometry. Histochemistry, 73, 577–588.

    Article  PubMed  CAS  Google Scholar 

  • SIEKEVITZ, P. (1962) The relation of cell structure to metabolic activity. In: The Molecular Control of Cellular Activity. (J.M. Allen, ed.). McGraw Hill, New York, pp. 143–166.

    Google Scholar 

  • SMITH, M.T. and WILLS, E.D. (1981) The effects of dietary lipid and phenobarbitone on the production and utilization of NADPH in the liver. A combined biochemical and quantitative cytochemical study. Biochem. J., 200, 691–699.

    PubMed  CAS  Google Scholar 

  • SMITH, M.T., REDICK, J.A. and BARON, J. (1983) Quantitative immunohistochemistry: A comparison of microdensitometric analysis of unlabeled antibody peroxidase-antiperoxidase staining and of microfluorometric analysis of indirect fluorescent antibody staining for nicotinamide adenosine dinucleotide phosphate (NADPH)-cytochrome c (P-450) reductase in rat liver. J. Histochem. Cytochem., 31, 1183–1189.

    Article  PubMed  CAS  Google Scholar 

  • SOLOMONS, J.R. and DALY, J.R. (1979) An in vitro effect of oestrogen on pentose-shunt activity in human breast tumours. In: Quantitative Cytochemistry and its Applications. (J.R. Pattison, L. Bitensky and J. Chayen, eds.). Academic Press, London, pp. 261–267.

    Google Scholar 

  • SPAMER, C. and PETTE, D. (1977) Activity patterns of phosphofructokinase, glyceraldehyde-phosphate dehydrogenase, lactate dehydrogenase and maleate dehydrogenase in microdissected fast and slow fibres from rabbit psoas and soleus muscle. Histochemistry, 52, 201–216.

    Article  PubMed  CAS  Google Scholar 

  • STOWARD, P.J. (1980) Criteria for the validation of quantitative histochemical enzyme techniques. In: Trends in Enzyme Histochemistry and Cytochemistry. (D. Evered and M. O’Connor, eds.). Excerpta Medica, Amsterdam, pp. 11–31.

    Google Scholar 

  • STOWARD, P.J., CHRISTIE, K.N. and THOMSON, C. (1988) Dipeptidyl peptidases in the soleus muscle of the rat before and after treatment with 5-hydrox-ytryptamine. Histochemistry, 89, 11–24.

    Article  PubMed  CAS  Google Scholar 

  • SWEZEY, R.R. and EPEL, D. (1986) Regulation of glucose-6-phosphate dehydrogenase activity in sea urchin eggs by reversible association with cell structural elements. J. Cell Biol., 103, 1509–1515.

    Article  PubMed  CAS  Google Scholar 

  • TEUTSCH, H.F. (1981) Chemomorphology of liver parenchyma. Progr. Histochem. Cytochem., 14/3, 1–92.

    Article  CAS  Google Scholar 

  • TROYER, H. and ROSENQUIST, T.H. (1975) Atomic absorption spectrophotometry applied to photographic densitometry. J. Histochem. Cytochem., 23, 941–944.

    Article  PubMed  CAS  Google Scholar 

  • TYAS, M.J. (1979) The effect of silicate cement on the mitochondria and lysosomes of cultured cells assessed by quantitative enzyme histochemistry. J. Oral Rehabil., 6, 55–60.

    Article  PubMed  CAS  Google Scholar 

  • VAN DER PLOEG, M. and DUIJNDAM, W.A.L. (1986) Matrix models. Essential tools for microscopic cytochemical research. Histochemistry, 84, 283–300.

    Article  PubMed  Google Scholar 

  • VAN NOORDEN, C.J.F. (1984) Histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase. Progr. Histochem. Cytochem., 15/4, 1–85.

    Google Scholar 

  • VAN NOORDEN, C.J.F. (1988) Enzyme reaction rate studies in tissue sections. Proc. Roy. Microsc. Soc., 23, 93–97.

    Google Scholar 

  • VAN NOORDEN, C.J.F. (1989) Principles of cytophotometry in enzyme histochemistry and validity of the reactions. Acta Histochem., Suppl. 37, 21–35.

    Google Scholar 

  • VAN NOORDEN, C.J.F. and BUTCHER, R.G. (1986a) The out-of-range error in microdensitometry. Histochem. J., 18, 397–398.

    Article  PubMed  Google Scholar 

  • VAN NOORDEN, C.J.F. and BUTCHER, R.G. (1986b) A quantitative histochemical study of NADPH-ferrihemoprotein reductase activity. Histochem. J., 18, 364–370.

    Article  PubMed  Google Scholar 

  • VAN NOORDEN, C.J.F and BUTCHER, R.G. (1990) Quantitative enzyme histochemistry. In: Histochemistry, Theoretical and Applied. Vol. 3, 4th ed. (P.J. Steward and A.G.E. Pearse, eds.). Churchill Livingstone, Edinburgh, in press.

    Google Scholar 

  • VAN NOORDEN, C.J.F. and VOGELS, I.M.C. (1989) Polyvinyl alcohol and other tissue protectants in enzyme histochemistry. A consumer’s guide. Histochem. J., 21, 373–379.

    Article  PubMed  Google Scholar 

  • VAN NOORDEN, C.J.R, TAS, J. and VOGELS, I.M.C. (1983) Cytophotometry of glucose-6-phosphate dehydrogenase activity in individual cells. Histochem. J., 15, 583–599.

    Article  PubMed  Google Scholar 

  • VAN NOORDEN, C.J.F., KOOIJ, A., VOGELS, I.M.C. and FREDERIKS, W.M. (1985) On the nature of the “nothing dehydrogenase” reaction. Histochem. J., 17, 1111–1118.

    Article  PubMed  Google Scholar 

  • VAN NOORDEN, C.J.F., DOLBEARE, F. and ATEN, J. (1989) Flow cytofluorometric analysis of enzyme reactions based on quencing of fluorescence by the final reaction product: detection of glucose-6-phosphate dehydrogenase deficiency in human erythrocytes. J. Histochem. Cytochem., 37, 1313–1318.

    Article  PubMed  Google Scholar 

  • VERHEESEN, J.H.H., MORSELT, A.F.W. and NEDERBRAGT, H. (1989) Histochemical quantification of Cu-thiolate clusters as a measure of metallothionein in the rat. Proc. 30th Dutch Fed. Meeting, Maastricht, p. 92.

    Google Scholar 

  • VIARENGO, A., MOORE, M.N., MANCINELLI, G., MAZZUCOTELLI, A., PIPE, R.K. and FARRAR, S.V. (1987) Metallothioneins and lysosomes in metal toxicity and accumulation in marine mussels: the effect of cadmium in the presence and absence of phenanthrene. Marine Biol., 94, 251–257.

    Article  CAS  Google Scholar 

  • WACHSMUTH, E.D. (1981a) The potential role of histochemistry in pharmacology and toxicology. In: Histochemistry. The Widening Horizons of its Applications in the Biomedical Sciences. (P.J. Stoward and J.M. Polak, eds.). Wiley and Sons, Chicester, pp. 221–236.

    Google Scholar 

  • WACHSMUTH, E.D. (1981b) The rationality and relative contribution of histochemical approaches to pharmacology and toxicology. Histochem. J., 13, 793–797.

    Article  PubMed  CAS  Google Scholar 

  • WENZEL, D.G. (1979) Quantification of the effects of xenobiotics. In: Quantitative Cytochemistry and its Applications. (J.R. Pattison, L. Bitensky and J. Chayen, eds.) Academic Press, London, pp. 161–174.

    Google Scholar 

  • WENZEL, D.G. and ACOSTA, D. (1975) Labilization of lysosomes and mitochondria in situ by hypoxia and hypoxia-related factors. Res. Commun. Chem. Pathol. Pharmacol., 12, 173–176.

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Peter Bach and John Baker

About this chapter

Cite this chapter

Van Noorden, C.J.F., Gossrau, R. (1991). Quantitative Histochemical and Cytochemical Assays. In: Histochemical and Immunohistochemical Techniques. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3094-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3094-3_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5370-9

  • Online ISBN: 978-94-011-3094-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics