Skip to main content

The RAS-adenylate cyclase pathway and cell cycle control in Saccharomyces cerevisiae

  • Chapter
Molecular Biology of Saccharomyces

Abstract

The cell cycle of Saccharomyces cerevisiae contains a decision point in G1 called ‘start’, which is composed of two specific sites. Nutrient-starved cells arrest at the first site while pheromone-treated cells arrest at the second site. Functioning of the RAS-adenylate cyclase pathway is required for progression over the nutrient-starvation site while overactivation of the pathway renders the cells unable to arrest at this site. However, progression of cycling cells over the nutrient-starvation site does not appear to be triggered by the RAS-adenylate cyclase pathway in response to a specific stimulus, such as an exogenous nutrient. The essential function of the pathway appears to be limited to provision of a basal level of cAMP. cAMP-dependent protein kinase rather than cAMP might be the universal integrator of nutrient availability in yeast. On the other hand stimulation of the pathway in glucose-derepressed yeast cells by rapidly-fermented sugars, such as glucose, is well documented and might play a role in the control of the transition from gluconeogenic growth to fermentative growth. The initial trigger of this signalling pathway is proposed to reside in a ‘glucose sensing complex’ which has both a function in controlling the influx of glucose into the cell and in activating in addition to the RAS-adenylate cyclase pathway all other glucose-induced regulatory pathways in yeast. Two crucial problems remaining to be solved with respect to cell cycle control are the nature of the connection between the RAS-adenylate cyclase pathway and nitrogen-source induced progression over the nutrient-starvation site of ‘start’ and second the nature of the downstream processes linking the RAS-adenylate cyclase pathway to Cyclin/CDC28 controlled progression over the pheromone site of ‘start’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

cAMP-PK:

cAMP-dependent protein kinase

References

  • Alonso A, Pascual C, Herrera L, Gancedo JM & Gancedo C (1984) Metabolic imbalance in a Saccharomyces cerevisiae mutant unable to grow on fermentable hexoses. Eur. J. Bio-chem. 138: 407–411

    Google Scholar 

  • Argüelles JC, Mbonyi K, Van Aelst L, Vanhalewyn M, Jans AWH & Thevelein JM (1990) Absence of glucose-induced cAMP signaling in the Saccharomyces cerevisiae mutants catI and cat3 which are deficient in derepression of glucose-re-pressible proteins. Arch. Microbiol. 154: 199–205

    Google Scholar 

  • Arkinstall SJ, Papasavvas SG, & Payton MA (1991) Yeast α-mating factor receptor-linked G-protein signal transduction suppresses RAS-dependent activity. FEBS Lett. 284: 123–128

    Article  PubMed  CAS  Google Scholar 

  • Banuelos Μ & Fraenkel DG (1982) Saccharomyces carlsbergen-sis fdp mutant and futile cycling of fructose-6-phosphate. Mol. Cell. Biol. 2: 921–929

    Google Scholar 

  • Barbacid Μ (1987) ras Genes. Ann. Rev. Biochem. 56: 779–827

    Google Scholar 

  • Baroni MD, Martegani E, Monti Ρ & Alberghina L (1989) Cell size modulation by CDC25 and RAS2 genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 9: 2715–2723

    Google Scholar 

  • Bataille N, Regnacq Μ & Boucherie Η (1991) Induction of a heat-shock-type response in Saccharomyces cerevisiae following glucose limitation. Yeast 7: 367–378

    Article  PubMed  CAS  Google Scholar 

  • Bataille N, Regnacq Μ & Boucherie Η (1991) Induction of a heat-shock-type response in Saccharomyces cerevisiae following glucose limitation. Yeast 7: 367–378

    Article  PubMed  CAS  Google Scholar 

  • Bedard DP, Johnston GC & Singer RA (1981) New mutations in the yeast Saccharomyces cerevisiae affecting completion of ‘start’. Curr. Genet. 4: 205–214

    Google Scholar 

  • Belazzi T, Wagner A, Wieser R, Schanz Μ, Adam G, Hartig A & Ruis Η (1991) Negative regulation of transcription of the Saccharomyces cerevisiae catalase Τ (CTT1) gene by cAMP is mediated by a positive control element. EMBO J. 10: 585–592

    PubMed  CAS  Google Scholar 

  • Beullens Μ & Thevelein JM (1990) Investigation of transport-associated phosphorylation of sugar in yeast mutants (snf3) lacking high-affinity glucose transport and in a mutant (fdp1) showing deficient regulation of initial sugar metabolism. Curr. Microbiol. 21: 39–46

    Article  CAS  Google Scholar 

  • Beullens M, Mbonyi K, Geerts L, Gladines D., Detremerie K, Jans AWH & Thevelein JM (1988) Studies on the mechanism of the glucose-induced cAMP-signal in glycolysis- and glucose repression-mutants of the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 172: 227–231

    Google Scholar 

  • Bissinger PH, Wieser R, Hamilton Β & Ruis Η (1989) Control of Saccharomyces cerevisiae catalase Τ gene (CTT1) expression by nutrient supply via the ras-cyclic AMP pathway. Mol. Cell. Biol. 9: 1309–1315

    Google Scholar 

  • Boutelet F, Petitjean A & Hilger F (1985) Yeast cdc35 mutants are defective in adenylate cyclase and are allelic with cyr1 mutants while CAS1 a new gene, is involved in the regulation of adenylate cyclase. EMBO J. 4: 2635–2641

    PubMed  CAS  Google Scholar 

  • Boy-Marcotte Ε, Garreau Η & Jacquet Μ (1987) Cyclic AMP controls the switch between division cycle and resting state programs in response to ammonium availability in Saccharomyces cerevisiae. Yeast 3: 85–93

    Article  PubMed  CAS  Google Scholar 

  • Breitenbach-Schmitt I, Schmitt HD, Heinisch J & Zimmermann FK (1984) Genetic and physiological evidence for the existence of a second glycolytic pathway in yeast parallel to the phosphofructokinase-aldolase reaction sequence. Mol. Gen. Genet. 195: 536–540

    Google Scholar 

  • Brenner C, Nakayama N, Goebl M, Tanaka K, Toh-E A & Matsumoto Κ (1988) CDC33 encodes mRNA Cap-binding protein eIF-4E of Saccharomyces cerevisiae. Mol. Cell. Biol. 8: 3556–3559

    Google Scholar 

  • Breviario D, Hinnebusch A, Cannon J, Tatchell Κ & Dhar R (1986) Carbon source regulation of RAS1 expression in Saccharomyces cerevisiae and the phenotypes of ras2 cells. Proc. Natl. Acad. Sci. USA 83: 4152–4156

    Google Scholar 

  • Broach JR (1991) RAS genes in Saccharomyces cerevisiae: signal transduction in search of a pathway. Trends Genet. 7: 28–33

    Article  PubMed  CAS  Google Scholar 

  • Broek D, Samiy N, Fasano O, Fujiyama A, Tamanoi T, North-up J & Wigler Μ (1985) Differential activation of yeast adeny-late cyclase by wild-type and mutant RAS proteins. Cell 41: 763–769

    Article  PubMed  CAS  Google Scholar 

  • Broek D, Toda T, Michaeli Τ, Levin L, Birchmeier C, Zoller Μ, Powers S & Wigler Μ (1987) The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway. Cell 48: 789–799

    Article  PubMed  CAS  Google Scholar 

  • Cameron S, Levin L, Zoller Μ & Wigler Μ (1988) cAMP-independent control of sporulation, glycogen metabolism, and heat shock resistance in S. cerevisiae. Cell 53: 555–566

    Google Scholar 

  • Camonis JH, Kalékine M, Gondré B, Garreau H, Boy-Mar-cotte Ε & Jacquet Μ (1986) Characterization, cloning and sequence analysis of the CDC25 gene which controls the cyclic AMP level of Saccharomyces cerevisiae. EMBO J. 5: 375–380

    PubMed  CAS  Google Scholar 

  • Cannon JF, Gitan R & Tatchell Κ (1990) Yeast cAMP-depend-ent protein kinase regulatory subunit mutations display a variety of phenotypes. J. Biol. Chem. 265: 11897–11904

    Google Scholar 

  • Carter BLA & Jagadish MN (1978) The relationship between cell size and cell division in the yeast Saccharomyces cerevisiae. Exp. Cell Res. 112: 15–24

    Article  PubMed  CAS  Google Scholar 

  • Casperson GF, Walker N, Brasier AR & Bourne HR (1983) A guanine nucleotide-sensitive adenylate cyclase in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 258: 7911–7914.

    Google Scholar 

  • Charlab R, Oliveira DE & Panek A (1985) Investigation of the relationship between sst1 and fdp mutations in yeast and their effect on trehalose synthesis. Brazilian J. Med. Biol. Res. 18: 447–454

    Google Scholar 

  • Chatton Β, Winsor Β, Boulanger Υ & Fasiolo F (1987) Cloning and characterization of the yeast methionyl-tRNA synthetase mutation mesl. J. Biol. Chem. 262: 15094–15097

    Google Scholar 

  • Chatton Β, Walter Ρ, Ebel J-P, Lacroute F & Fasiolo F (1988) The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. J. Biol. Chem. 263: 52–57

    Google Scholar 

  • Cherry JR, Johnson TR, Dollard C, Sushter JR & Denis CL (1989) Cyclic AMP-dependent protein kinase phosphorylates and inactivates the yeast transcriptional activator ADR1. Cell 56: 409–419

    Article  PubMed  CAS  Google Scholar 

  • Coote PJ, Cole MB & Jones MV (1991) Induction of increased thermotolerance in Saccharomyces cerevisiae may be triggered by a mechanism involving intracellular pH. J. Gen. Microbiol. 137: 1701–1708

    Google Scholar 

  • DeFeo-Jones D, Scolnick EM, Koller R & Dahr R (1983) ras-Related gene sequences identified and isolated from Saccharomyces cerevisiae. Nature 306: 707–709

    Google Scholar 

  • DelaFuente G (1970) Specific inactivation of yeast hexokinase induced by xylose in the presence of a phosphoryl donor substrate. Eur. J. Biochem. 16: 240–243

    Article  PubMed  CAS  Google Scholar 

  • De Vendittis Ε, Vitelli Α, Zahn R & Fasano Ο (1986) Suppression of defective RASl and RAS2 functions in yeast by an adenylate cyclase activated by a single amino acid change. EMBO J. 5: 3657–3663

    PubMed  CAS  Google Scholar 

  • Dhar R, Nieto A, Koller R, DeFeo-Jones D & Scolnick Ε (1984) Nucleotide sequence of two rasH related-genes isolated from the yeast Saccharomyces cerevisiae. Nucleic Acids Res. 12: 3611–3618

    Article  PubMed  CAS  Google Scholar 

  • Dumont JE, Jauniaux JC & Roger PP (1989) The cyclic AMP-mediated stimulation of cell proliferation. TIBS 14: 67–71

    PubMed  CAS  Google Scholar 

  • Engelberg D, Perlman R & Levitzki A (1989) Transmembrane signalling in Saccharomyces cerevisiae. Cellular Signalling 1: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Entian KD, Droll L & Mecke D (1983) Studies on rapid reversible and non-reversible inactivation of fructose-1,6-bisphos-phatase and malate dehydrogenase in wild-type and glycolytic block mutants of Saccharomyces cerevisiae. Arch. Microbiol. 134: 187–192

    Google Scholar 

  • Fasano O, Crechet JB, De Vendittis E, Zahn R, Feger G, Vitelli A & Parmeggiani A (1988) Yeast mutants temperature-sensitive for growth after random mutagenesis of the chromosomal RAS2 gene and deletion of the RAS1 gene. EMBO J. 7: 3375–3383

    PubMed  CAS  Google Scholar 

  • Fedor-Chaiken M, Deschenes RJ & Broach JR (1990) SRV2, a gene required for RAS activation of adenylate cyclase in yeast. Cell 61: 329–340

    Google Scholar 

  • Fernandez R, Herrero Ρ & Moreno F (1985) Inhibition and inactivation of glucose-phosphorylating enzymes from Saccharomyces cerevisiae by D-xylose. J. Gen. Microbiol. 131: 2705–2709

    Google Scholar 

  • Field J, Vojtek A, Ballester R, Bolger G, Colicelli J, Ferguson K, Gerst J, Kataoka T, Michaeli Τ, Powers S, Riggs M, Rodgers L, Wieland I, Wheland Β & Wigler Μ (1990) Cloning and characterization of CAP, the S. cerevisiae gene encoding the 70 kd adenylyl cyclase-associated protein. Cell 61: 319–327

    Article  PubMed  CAS  Google Scholar 

  • Fraenkel DG (1982) Carbohydrate metabolism. In: Strathern JN, Jones EW & Broach JR (Eds) The Molecular Biology of the Yeast Saccharomyces. Metabolism and Gene Expression (pp 1–37 ). Cold Spring Harbory Laboratory, Cold Spring Harbor

    Google Scholar 

  • Fraenkel DG (1985) On RAS gene function in yeast. Proc. Natl. Acad. Sci. USA 82: 4740–4744

    Article  PubMed  CAS  Google Scholar 

  • François J, Eraso Ρ & Gancedo C (1987) Changes in the concentration of cAMP, fructose-2,6-bisphosphate and related metabolites and enzymes in Saccharomyces cerevisiae during growth on glucose. Eur. J. Biochem. 164: 369–373

    Google Scholar 

  • François J, Villanueva ME & Hers HG (1988) The control of glycogen metabolism in yeast. 1. Interconversion in vivo of glycogen synthase and glycogen Phosphorylase induced by glucose, a nitrogen source or uncouplers. Eur. J. Biochem. 174: 551–559

    Google Scholar 

  • François J, Neves M-J & Hers H-G (1991) The control of trehalose biosynthesis in Saccharomyces cerevisiae: evidence for a catabolite inactivation and repression of trehalose-6-phos-phate synthase and trehalose-6-phosphate phosphatase. Yeast 7: 575–587

    Article  PubMed  Google Scholar 

  • François J, Van Schaftingen Ε & Hers HG (1984) The mechanism by which glucose increases fructose-2,6-bisphosphate concentration in Saccharomyces cerevisiae. A cyclic-AMP-dependent activation of phosphofructokinase 2. Eur. J. Biochem. 145: 187–193

    Google Scholar 

  • Franzusoff AJ & Cirillo VP (1982) Uptake and phosphorylation of 2-deoxy-D-glucose by wild-type and single-kinase strains of Saccharomyces cerevisiae. Biochim. Biophys. Acta 688: 295–304

    Article  PubMed  CAS  Google Scholar 

  • Frascotti G, Baroni D & Martegani Ε (1990) The glucose-induced polyphosphoinositides turnover in Saccharomyces cerevisiae is not dependent on the CDC25-RAS mediated signal transduction pathway. FEBS Lett. 274: 19–22

    Article  PubMed  CAS  Google Scholar 

  • Futcher AB (1990) Yeast cell cycle. Curr. Opinion Cell Biol. 2: 246–251

    Article  PubMed  CAS  Google Scholar 

  • Gancedo C & Schwerzmann Κ (1976) Inactivation by glucose of phosphoenolpyruvate carboxykinase from Saccharomyces cerevisiae. Arch. Microbiol. 109: 221–225

    Article  PubMed  CAS  Google Scholar 

  • Gancedo JM & Gancedo C (1979) Inactivation of glyconeogenic enzymes in glycolytic mutants of Saccharomyces cerevisiae. Eur. J. Biochem. 101: 455–460

    Article  PubMed  CAS  Google Scholar 

  • Garrett S & Broach J (1989) Loss of Ras activity in Saccharomyces cerevisiae is suppressed by disruptions of a new kinase gene, YAK1, whose product may act downstream of the cAMP-dependent protein kinase. Genes & Dev. 3: 1336–1348

    Article  CAS  Google Scholar 

  • Garrett S, Menold MM & Broach JR (1991) The Saccharomyces cerevisiae YAK1 gene encodes a protein kinase that is induced by arrest early in the cell cycle. Mol. Cell. Biol. 11: 4045–4052

    Google Scholar 

  • Gerst JE, Ferguson K, Vojtek A, Wigler Μ & Field J (1991) CAP is a bifunctional component of the Saccharomyces cerevisiae adenylyl cyclase complex. Mol. Cell. Biol. 11: 1248–1257

    Google Scholar 

  • Gibbs JB & Marshall MS (1989) The ras oncogene — an important regulatory element in lower eucaryotic organisms. Microbiol. Rev. 53: 171–185

    PubMed  CAS  Google Scholar 

  • Gilman AG (1987) G Proteins: transducers of receptor-generated signals. Annu. Rev. Biochem. 56: 615–649

    Article  PubMed  CAS  Google Scholar 

  • Hadwiger JA, Wittenberg C, Richardson HE, Lopes MD & Reed SI (1989) A family of cyclin homologs that control the G1 phase in yeast. Proc. Natl. Acad. Sci. USA 86: 6255–6259

    Google Scholar 

  • Hanic-Joyce PJ, Johnston GC & Singer RA (1987) Regulated arrest of cell proliferation mediated by yeast prt1 mutations. Exp. Cell Res. 172: 134–145

    Google Scholar 

  • Hartwell LH (1974) Saccharomyces cerevisiae cell cycle. Bacte-riol. Rev. 38: 164–198

    Google Scholar 

  • Hartwell LH & McLaughlin CS (1968) Mutants of yeast with temperature-sensitive isoleucyl-tRNA synthetases. Poc. Natl. Acad. Sci. USA 59: 422–428

    Article  CAS  Google Scholar 

  • Hartwell LH, Mortimer RK, Culotti J & Culotti Μ (1973) Genetic control of the cell division cycle in yeast: genetic analysis of cdc mutants. Genetics 74: 267–286

    PubMed  CAS  Google Scholar 

  • Hartwell LH, Culotti J, Pringle JR & Reid BJ (1974) Genetic control of the cell division cycle in yeast. Science 183: 46–51

    Article  PubMed  CAS  Google Scholar 

  • Hartwell LH, Culotti J, Pringle JR & Reid BJ (1974) Genetic control of the cell division cycle in yeast. Science 183: 46–51

    Article  PubMed  CAS  Google Scholar 

  • Holzer Η (1984) Mechanism and function of reversible phosphorylation of fructose-1,6-bisphosphatase in yeast. In: Cohen Ρ (Ed) Molecular Aspects of Cellular Regulation, Vol 3 (pp 143–154 ). Elsevier, Amsterdam

    Google Scholar 

  • Hottiger Τ, Boller Τ & Wiemken A (1989) Correlation of trehalose content and heat resistance in yeast mutants altered in the RAS/adenylate cyclase pathway: is trehalose a thermoprotec-tant? FEBS Lett. 255: 431–434

    Article  PubMed  CAS  Google Scholar 

  • Iida H, Sakaguchi S, Yagawa Υ & Anraku Υ (1990) Cell cycle control by Ca2+ in Saccharomyces cerevisiae. J. Biol. Chem. 265: 21216–21222

    Google Scholar 

  • Jacquet Μ & Camonis J (1985) Contröle du cycle de division cellulaire et de 1a sporulation chez Saccharomyces cerevisiae par 1e Système de’l AMP cyclique. Biochimie 67: 35–43

    Article  PubMed  CAS  Google Scholar 

  • Jaspers ΗΤΑ & Van Steveninck J (1975) Transport-associated phosphorylation of 2-deoxy-D-glucose in Saccharomyces fra-gilis. Biochim. Biophys. Acta 406: 370–385

    Article  PubMed  CAS  Google Scholar 

  • Johnston GC, Pringle JR & Hartwell LH (1977) Coordination of growth with cell division in the yeast Saccharomyces cerevisiae. Exp. Cell Res. 105: 79–98

    Google Scholar 

  • Kaibuchi K, Miyajima A, Arai Κ & Matsumoto Κ (1986) Possible involvement of RAS-encoded proteins in glucose-induced inositolphospholipid turnover in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 83: 8172–8176

    Google Scholar 

  • Kataoka Τ, Powers S, McGill C, Fasano O, Strathern J, Broach J & Wigler Μ (1984) Genetic analysis of yeast RAS1 and RAS2 genes. Cell 37: 437–445

    Article  PubMed  CAS  Google Scholar 

  • Kataoka T, Broek D & Wigler Μ (1985a) DNA sequence and characterization of the S. cerevisiae gene encoding adenylate cyclase. Cell 43: 493–505

    Article  PubMed  CAS  Google Scholar 

  • Kataoka T, Powers S, Cameron S, Fasano O, Goldfarb M, Broach J & Wigler Μ (1985b) Functional homology of mammalian and yeast RAS genes. Cell 40: 19–26

    Article  PubMed  CAS  Google Scholar 

  • Kato H, Uno I, Ishikawa Τ & Takenawa Τ (1989) Activation of phosphatidylinositol kinase and phosphatidyl-4-phosphate kinase by cAMP in Saccharomyces cerevisiae. J. Biol. Chem. 264: 3316–3321

    Google Scholar 

  • Kim J-H & Powers S (1991) Overexpression of RPI1, a novel inhibitor of the yeast ras-cyclic AMP pathway, down-regulates normal but not mutationally activated ras functions. Mol. Cell. Biol. 11: 3894–3904

    PubMed  CAS  Google Scholar 

  • Kruckeberg AL & Bisson LF (1990) The HXT2 gene of Saccharomyces cerevisiae is required for high-affinity glucose transport. Mol. Cell. Biol. 10: 5903–5913

    PubMed  CAS  Google Scholar 

  • Leao C & Van Uden Ν (1984) Effects of ethanol and other alkanols on passive proton influx in the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 774: 43–48

    Article  PubMed  CAS  Google Scholar 

  • Liao Η & Thorner J (1980) Yeast mating pheromone α factor inhibits adenylate cyclase. Proc. Natl. Acad. Sci. USA 77: 1898–1902

    Article  PubMed  CAS  Google Scholar 

  • Linder Ρ & Prat A (1990) Baker’s yeast, the new work horse in protein synthesis studies — analyzing eukaryotic translation initiation. Bio Essays 12: 519–526

    CAS  Google Scholar 

  • Londesborough J & Lukkari TM (1980) The pH and temperature dependence of the activity of the high Km cyclic nucleotide phosphodiesterase of baker’s yeast. J. Biol. Chem. 255: 9262–9267

    PubMed  CAS  Google Scholar 

  • Malone RE (1990) Dual regulation of meiosis in yeast. Cell 61: 375–378

    Article  PubMed  CAS  Google Scholar 

  • Marshall MS, Gibbs JB, Scolnick EM & Sigal IS (1987) Regu-latory function of the Saccharomyces cerevisiae RAS C-termi-nus. Mol. Cell. Biol. 7: 2309–2315

    Google Scholar 

  • Martegani E, Vanoni Μ & Baroni Μ (1984) Macromolecular synthesis in the cell cycle mutant cdc25 of budding yeast. Eur. J. Biochem. 144: 205–210

    Google Scholar 

  • Martegani E, Baroni Μ & Wanoni Μ (1986) Interaction of cAMP with the CDC25-mediated step in the cell cycle of budding yeast. Exp. Cell Res. 162: 544–548

    Google Scholar 

  • Matsumoto K, Uno I, Toh-e A, Ishikawa Τ & Oshima Υ (1982) Cyclic AMP may not be involved in catabolite repression in Saccharomyces cerevisiae: evidence from mutants capable of utilizing it as an adenine source. J. Bacteriol. 150: 277–285

    PubMed  CAS  Google Scholar 

  • Matsumoto K, Uno I & Ishikawa Τ (1983) Initiation of meiosis in yeast mutants defective in adenylate cyclase and cyclic AMP-dependent protein kinase. Cell 32: 417–423

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto K, Uno I & Ishikawa Τ (1985) Genetic analysis of the role of cAMP in yeast. Yeast 1: 15–24

    Article  PubMed  CAS  Google Scholar 

  • Mazon MJ, Gancedo JM & Gancedo C (1982) Inactivation of yeast fructose-1,6-bisphosphatase. In vivo phosphorylation of the enzyme. J. Biol. Chem. 257: 1128–1130

    Google Scholar 

  • Mbonyi K, Beullens M, Detremerie K, Geerts L & Thevelein JM (1988) Requirement of one functional RAS gene and inability of an oncogenic ras-variant to mediate the glucose-induced cAMP signal in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 8: 3051–3057

    Google Scholar 

  • Mbonyi K, Van Aelst L, Argüelles JC, Jans AWH & Thevelein JM (1990) Glucose-induced hyperaccumulation of cAMP and absence of glucose repression in yeast strains with reduced activity of cAMP-dependent protein kinase. Mol. Cell. Biol. 10: 4518–4523

    Google Scholar 

  • Meredith SA & Romano AH (1977) Uptake and phosphorylation of 2-deoxy-D-glucose by wild type and respiration-deficient baker’s yeast. Biochim. Biophys. Acta 497: 745–759

    Article  PubMed  CAS  Google Scholar 

  • Mitts MR, Grant DB & Heideman W (1990) Adenylate cyclase in Saccharomyces cerevisiae is a peripheral membrane protein. Mol. Cell. Biol. 10: 3873–3883

    Google Scholar 

  • Mitts MR, Bradshaw-Rouse J & Heideman W (1991) Interactions between adenylate cyclase and the yeast GTPase-activa-ting protein IRAl. Mol. Cell. Biol. 11: 4591–4598

    Google Scholar 

  • Müller D & Holzer Η (1981) Regulation of fructose-1,6-bisphos-phatase in yeast by phosphorylation/dephosphorylation. Biochem. Biophys. Res. Commun. 103: 926–933

    Article  PubMed  Google Scholar 

  • Munder Τ & Küntzel Η (1989) Glucose-induced cAMP signaling in Saccharomyces cerevisiae is mediated by the CDC25 protein. FEBS Lett. 242: 341–345

    Article  PubMed  CAS  Google Scholar 

  • Nakajima H, Oshima I, Yashiro M, Yoda K, Yamasaki Μ & Tamura G (1987) Novel Saccharomyces cerevisiae temperature-sensitive cyr1 mutant which accumulates glycogen particles. Agric. Biol. Chem. 51: 2679–2689

    Google Scholar 

  • Natsoulis G, Hilger F & Fink GR (1986) The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae. Cell 46: 235–243

    Article  PubMed  CAS  Google Scholar 

  • Nikawa J, Cameron S, Toda T, Ferguson KW & Wigler Μ (1987a) Rigorous feedback control of cAMP levels in Saccharomyces cerevisiae. Genes & Dev. 1: 931–937

    Article  CAS  Google Scholar 

  • Nikawa J, Sass Ρ & Wigler Μ (1987b) Cloning and characterization of the low-affinity cyclic AMP phosphodiesterase gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 7: 3629–3636

    Google Scholar 

  • Panek AD, Sampaio AL, Braz GC, Baker SJ & Mattoon JR (1979) Genetic and metabolic control of trehalose and glycogen synthesis. New relationships between energy reserves, catabolite repression and maltose utilization. Cell. Mol. Biol. 25: 345–354

    Google Scholar 

  • Panek AC, François J & Panek AD (1988) New insights into a mutant of Saccharomyces cerevisiae having impaired sugar uptake and metabolism. Curr. Gen. 13: 15–20

    Google Scholar 

  • Pardee AB (1974) A restriction point for control of normal animal cell proliferation. Proc. Natl. Acad. Sci. USA 71: 1286–1290

    Article  PubMed  CAS  Google Scholar 

  • Perlman R, Eilam Y, Padan E, Simchen G & Levitzki A (1989) Rapid intracellular alkalinization of Saccharomyces cerevisiae Mata cells in response to Alpha-Factor requires the Cdc25 gene product. Cellular Signalling 1: 577–586

    Article  PubMed  CAS  Google Scholar 

  • Petitjean A, Hilger F & Tatchell Κ (1990) Comparison of ther-mosensitive alleles of the Cdc25 gene involved in the cAMP metabolism of Saccharomyces cerevisiae. Genetics 124: 797–806

    PubMed  CAS  Google Scholar 

  • Piper Ρ (1990) Interdependence of several heat shock gene activations, cyclic AMP decline and changes at the plasma membrane of Saccharomyces cerevisiae. A. v. Leeuwenhoek 58: 195–201

    Article  CAS  Google Scholar 

  • Postma PW & Lengeler JW (1985) Phosphoenolpyruvatexar-bohydrate phosphotransferase system of bacteria. Microbiol. Rev. 49: 232–269

    PubMed  CAS  Google Scholar 

  • Powers S, Kataoka T, Fasano O, Goldfarb M, Strathern J, Broach J & Wigler Μ (1984) Genes in S. cerevisiae encoding proteins with domains homologous to the mammalian ras proteins. Cell 36: 607–612

    Article  PubMed  CAS  Google Scholar 

  • Praekelt UM & Meacock PA (1990) HSP12, a new small heat shock gene of Saccharomyces cerevisiae: analysis of structure, regulation and function. Mol. Gen. Genet. 223: 97–106

    Article  PubMed  CAS  Google Scholar 

  • Pringle JR & Hartwell LH (1981) The Saccharomyces cerevisiae cell cycle. In: Strathern JN, Jones EW & Broach JR (Eds) The Molecular Biology of the Yeast Saccharomyces. Metabolism and Gene Expression (pp 97–142 ). Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Reed SI (1980) The selection of S. cerevisiae mutants defective in the start event of cell division. Genetics 95: 561–577

    PubMed  CAS  Google Scholar 

  • Reed SI (1991) Gl-specific cyclins: in search of an S-phase-promoting factor. Tr. Genet. 7: 95–99

    CAS  Google Scholar 

  • Resnick RJ & Racker Ε (1988) Phosphorylation of the RAS2 gene product by kinase A inhibits the activation of yeast adenylyl cylase. Proc. Natl. Acad. Sci. USA 85: 2474–2478

    Article  PubMed  CAS  Google Scholar 

  • Robinson LC, Gibbs JB, Marshall MS, Sigal IS & Tatchell Κ (1987) cdc25: a component of the Ras-adenylate cyclase pathway in Saccharomyces cerevisiae. Science 235: 1218–1221

    Google Scholar 

  • Rose M, Entian KD, Hofmann L & Vogel RF (1988) Irreversible inactivation of Saccharomyces cerevisiae fructose-1,6-bis-phosphatase independent of protein phosphorylation at Ser11. FEBS Lett. 241: 55–59

    Article  PubMed  CAS  Google Scholar 

  • Rose M, Albig W & Entian KD (1991) Glucose repression in Saccharomyces cerevisiae is directly associated with hexose phosphorylation by hexokinase-PI and hexokinase-PII. Eur. J. Biochem. 199: 511–518

    Google Scholar 

  • Saier MH Jr, Wu L-F & Reizer J (1990) Regulation of bacterial physiological processes by three types of protein phosphory-lating systems. Tr. Biochem. Sci. 15: 391–395

    Google Scholar 

  • Sass P, Field J, Nikawa J, Toda Τ & Wigler Μ (1986) Cloning and characterization of the high-affinity cAMP phosphodiesterase of S. cerevisiae. Proc. Natl. Acad. Sci. USA 83: 9303–9307

    Google Scholar 

  • Schuddemat J, Van den Broek PJA & Van Steveninck J (1986) Effect of xylose incubation on the glucose transport system in Saccharomyces cerevisiae. Biochim. Biophys. Acta 861: 489–493

    Google Scholar 

  • Shin D-Y, Matsumoto K, Iida H, Uno I & Ishikawa Τ (1987a) Heat shock response of Saccharomyces cerevisiae mutants altered in cyclic AMP-dependent protein phosphorylation. Mol. Cell. Biol. 7: 244–250

    Google Scholar 

  • Shin D-Y, Uno I & Ishikawa Τ (1987b) Control of the G1 — GO transition and GO protein synthesis by cyclic AMP in Saccharomyces cerevisiae. Curr. Genet. 12: 577–582

    Google Scholar 

  • Sols A (1976) The Pasteur effect in the allosteric era. In: Korn-berg A & Ochoa S (Eds) Reflections on Biochemistry (pp 199–206 ). Pergamon Press, Oxford

    Google Scholar 

  • Suoranta Κ (1985) Cyclic AMP phosphodiesterase activities in growing cells of baker’s yeast (Saccharomyces cerevisiae). J. Cyclic Nucleot. Prot. Phosphor. Res. 10: 121–127

    CAS  Google Scholar 

  • Suoranta Κ & Londesborough J (1984) Purification of intact and nicked forms of a zinc-containing, Mg+ dependent, low Km cyclic AMP phosphodiesterase from baker’s yeast. J. Biol. Chem. 259: 6964–6971

    PubMed  CAS  Google Scholar 

  • Tanaka K, Matsumoto K, Toh-e A (1988) Dual regulation of the expression of the polyubiquitin gene by cyclic AMP and heat shock in yeast. EMBO J. 7: 495–502

    PubMed  CAS  Google Scholar 

  • Tanaka K, Matsumoto Κ & Toh-e A (1989) Iral, an inhibitory regulator of the RAS — cyclic AMP pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 9: 757–768

    Google Scholar 

  • Tanaka K, Nakafuku M, Satoh T, Marshall MS, Gibbs JB, Matsumoto K, Kaziro Υ & Toh-e A (1990a) S. cerevisiae genes IRA1 and IRA2 encode proteins that may be function-nally equivalent to mammalian ras GTPase activating protein. Cell 60: 803–807

    Google Scholar 

  • Tanaka K, Nakafuku M, Tamanoi F, Kaziro Y, Matsumoto Κ & Toh-e A (1990b) IRA2, a second gene of Saccharomyces cerevisiae that encodes a protein with a domain homologous to mammalian ras GTPase-activating protein. Mol. Cell. Biol. 10: 4303–4313

    Google Scholar 

  • Tatchell Κ (1986) RAS genes and growth control in Saccharomyces cerevisiae. J. Bacteriol. 166: 364–367

    Google Scholar 

  • Tatchell K, Chaleff DT, DeFeo-Jones D, Scolnick EM (1984) Requirement of either of a pair of ras-related genes of Saccharomyces cerevisiae for spore viability. Nature 309: 523–527

    Article  PubMed  CAS  Google Scholar 

  • Tatchell K, Robinson LC & Breitenbach Μ (1985) RAS2 of Saccharomyces cerevisiae is required for gluconeogenic growth and proper response to nutrient limitation. Proc. Natl. Acad. Sci. USA 82: 3785–3789

    Google Scholar 

  • Thevelein JM (1984a) Cyclic-AMP content and trehalase activation in vegetative cells and ascospores of yeast. Arch. Microbiol. 138: 64–67

    Article  PubMed  CAS  Google Scholar 

  • Thevelein JM (1984b) Regulation of trehalose mobilization in fungi. Microbiol. Rev. 48: 42–59

    PubMed  CAS  Google Scholar 

  • Thevelein JM (1988) Regulation of trehalase activity by phosphorylation — dephosphorylation during developmental transitions in fungi. Exp. Mycol. 12: 1–12

    Article  CAS  Google Scholar 

  • Thevelein JM (1991) Fermentable sugars and intracellular acidification as specific activators of the RAS adenylate cyclase signalling pathway in yeast— the relationship to nutrient-induced cell cycle control. Mol. Microbiol. 5: 1301–1307

    Article  PubMed  CAS  Google Scholar 

  • Thevelein JM & Beullens Μ (1985) Cyclic AMP and the stimulation of trehalase activity in the yeast Saccharomyces cerevisiae by carbon sources, nitrogen sources and inhibitors of protein synthesis. J. Gen. Microbiol. 131: 3199–3209

    PubMed  CAS  Google Scholar 

  • Toda T, Uno I, Ishikawa T, Powers S, Kataoka T, Broek D, Cameron S, Broach J, Matsumoto Κ & Wigler Μ (1985) In yeast, Ras proteins are controlling elements of adenylate cyclase. Cell 40: 27–36

    Google Scholar 

  • Toda T, Cameron S, Sass P, Zoller Μ, Scott JD, McBullen B, Hurwitz M, Krebs EG & Wigler Μ (1987a) Cloning and characterization of BCY1, a locus encoding a regulatory sub-unit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Mol. Cell. Biol. 7: 1371–1377

    Google Scholar 

  • Toda T, Cameron S, Sass P, Zoller Μ & Wigler Μ (1987b) Three different genes in Saccharomyces cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell 50: 277–287

    Article  PubMed  CAS  Google Scholar 

  • Toda T, Cameron S, Sass Ρ & Wigler Μ (1988) SCH9, a gene of Saccharomyces cerevisiae that encodes a protein distinct from, but functionally and structurally related to cAMP-de-pendent protein kinase catalytic subunits. Genes & Dev. 2: 517–527

    Google Scholar 

  • Unger MW & Hartwell LH (1976) Control of cell division in Saccharomyces cerevisiae by methionyl-tRNA. Proc. Natl. Acad. Sci. USA 73: 1664–1668

    Article  PubMed  CAS  Google Scholar 

  • Uno I, Fukami K, Kato H, Takenawa Τ & Ishikawa Τ (1988) Essential role for phosphatidylinositol 4,5-biphosphate in yeast cell proliferation. Nature 333, 188–190

    Article  PubMed  CAS  Google Scholar 

  • Van Aelst L, Boy-Marcotte E, Camonis JH, Thevelein JM & Jacquet Μ (1990) The C-terminal part of the CDC25 gene product plays a key role in signal transduction in the glucose-induced modulation of cAMP level in Saccharomyces cerevisiae. Eur. J. Biochem. 193: 675–680

    Google Scholar 

  • Van Aelst L, Hohmann S, Zimmermann Κ, Jans AWH & Thevelein JM (1991a) A yeast homologue of the bovine lens fibre MIP gene family complements the growth defect of a Saccharomyces cerevisiae mutant on fermentable sugars but not its defect in glucose-induced RAS-mediated cAMP signalling. EMBO J. 10: 2095–2104

    PubMed  CAS  Google Scholar 

  • Van Aelst L, Jans AWH & Thevelein JM (1991b) Involvement of the CDC25 gene product in the signal transmission pathway of the glucose-induced RAS-mediated cAMP signal in the yeast Saccharomyces cerevisiae. J. Gen. Microbiol. 137: 341–349

    Google Scholar 

  • Van de Poll KW & Schamhart DHJ (1977) Characterization of a regulatory mutant of fructose-1,6-diphosphatase in Saccharo-myces carlsbergensis. Mol. Gen. Genet. 154: 61–66

    Google Scholar 

  • Van de Poll KW, Kerkenaar A & Schamhart DHJ (1974) Isolation of a regulatory mutant of fructose-1,6-diphosphatase in Saccharomyces carlsbergensis. J. Bacteriol. 117: 965–970

    Google Scholar 

  • Van der Plaat JB (1974) Cyclic 3,’5’ — adenosine monophosphate stimulates trehalose degradation in bakers’ yeast. Bio-chem. Biophys. Res. Commun. 56: 580–587

    Article  CAS  Google Scholar 

  • Van Steveninck J (1968) Transport and transport — associated phosphorylation of 2-deoxy-D-glucose in yeast. Biochim. Biophys. Acta 163: 386–394

    Article  PubMed  CAS  Google Scholar 

  • Verdier JM, Camonis JH & Jacquet Μ (1989) Cloning of CDC33: a gene essential for growth and sporulation which does not interfere with cAMP production of Saccharomyces cerevisiae. Yeast 5: 79–90

    Article  PubMed  CAS  Google Scholar 

  • Vojtek A, Haarer B, Field J, Gerst J, Pollard D, Brown S & Wigler Μ (1991) Evidence for a functional link between profi-lin and CAP in the yeast S. cerevisiae. Cell 66: 497–505

    Article  PubMed  CAS  Google Scholar 

  • Weitzel G, Pilatus U & Rensing L (1987) The cytoplasmic pH, ATP content and total protein synthesis rate during heat-shock protein inducing treatments in yeast. Exp. Cell Res. 170: 64–79

    Google Scholar 

  • Werner-Washburne M, Becker J, Kosic-Smithers J & Craig EA (1989) Yeast Hsp70 RNA levels vary in response to the physiological status of the cell. J. Bacteriol. 171: 2680–2688

    PubMed  CAS  Google Scholar 

  • Wiemken A (1990) Trehalose in yeast, stress protectant rather than reserve carbohydrate. A. v. Leeuwenhoek 58: 209–217

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Thevelein, J.M. (1992). The RAS-adenylate cyclase pathway and cell cycle control in Saccharomyces cerevisiae . In: Grivell, L.A. (eds) Molecular Biology of Saccharomyces . Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2504-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2504-8_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5104-0

  • Online ISBN: 978-94-011-2504-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics