Skip to main content

The genetics of nuclear pre-mRNA splicing: a complex story

  • Chapter
Molecular Biology of Saccharomyces

Abstract

The occurrence of introns in nuclear precursor RNAs (pre-mRNAs) is widespread in eukaryotes, and the splicing process that removes them is basically the same in yeasts as it is in higher eukaryotes. Splicing takes place in a very large, multi-component complex, the spliceosome, and biochemical studies have been complicated by the large number of splicing factors involved. This review describes how genetic approaches used to study RNA splicing in Saccharomyces cerevisiae have complemented the biochemical studies and led to rapid advances in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Abovich Ν, Legrain Ρ & Rosbash Μ (1990) The yeast PRP6 gene encodes a U4/U6 small nuclear ribonucleoprotein particle (snRNP) protein, and the PRP9 gene encodes a protein required for U2 snRNP binding. Mol. Cell. Biol. 10: 6417–6425

    Google Scholar 

  • Banroques J & Abelson JN (1989) PRP4: a protein of the yeast U4/U6 small nuclear ribonucleoprotein particle. Mol. Cell. Biol. 9: 3710–3719

    PubMed  CAS  Google Scholar 

  • Brow DA & Guthrie C (1988) Spliceosomal RNA U6 is remarkably conserved from yeast to mammals. Nature 334: 213–218

    Article  PubMed  CAS  Google Scholar 

  • Brow DA & Guthrie C (1989) Splicing a spliceosomal RNA. Nature 337: 14–15

    Article  PubMed  CAS  Google Scholar 

  • Burgess S, Couto JR & Guthrie C (1990) A putative ATP binding protein influences the fidelity of branchpoint recognition in yeast splicing. Cell 60: 705–717

    Article  PubMed  CAS  Google Scholar 

  • Chapman KB & Boeke JD (1991) Isolation and characterisation of the gene encoding yeast debranching enzyme. Cell 65: 483–492

    Article  PubMed  CAS  Google Scholar 

  • Chen J-H & Lin R-J (1990) The yeast PRP2 protein, a putative RNA-dependent ATP-ase, shares extensive sequence homology with two other pre-mRNA splicing factors. Nucleic Acids Res. 18: 6447

    Article  PubMed  CAS  Google Scholar 

  • Cheng S-C & Abelson J (1987) Spliceosomal assembly in yeast. Genes & Dev. 1: 1014–1027

    Article  CAS  Google Scholar 

  • Company M, Arenas J & Abelson J (1991) Requirement of the RNA helicase-like protein PRP22 for release of messenger RNA from spliceosomes. Nature 349: 487–493

    Article  PubMed  CAS  Google Scholar 

  • Couto JR, Tamm J, Parker R & Guthrie C (1987) A trans-acting suppressor restores splicing of a yeast intron with a branch point mutation. Genes & Dev. 1: 445–455

    Article  CAS  Google Scholar 

  • Dalbadie-McFarland G & Abelson J (1990) PRP5: a helicase-like protein required for mRNA splicing in yeast. PNAS 87: 4236–4240

    Article  PubMed  CAS  Google Scholar 

  • Eng FJ & Warner JR (1991) Structural basis for the regulation of splicing of a yeast messenger RNA. Cell 64: 797–804

    Article  Google Scholar 

  • Engerbrecht J, Voelkel-Meiman Κ & Roeder GS (1991) Meio-sis-specific splicing in yeast. Cell 66: 1257–1268

    Article  Google Scholar 

  • Fabrizio Ρ & Abelson J (1990) Two domains of yeast U6 small nuclear RNA required for both steps of nuclear precursor messenger RNA splicing. Science 250: 404–409

    Article  PubMed  CAS  Google Scholar 

  • Fink GR (1987) Pseudogenes in yeast? Cell 49: 5–6.

    Article  PubMed  CAS  Google Scholar 

  • Fouser LA & Frieson JD (1986) Mutations in a yeast intron demonstrates the importance of specific conserved nucleotides for the two stages of nuclear mRNA splicing. Cell 45: 81–93

    Article  PubMed  CAS  Google Scholar 

  • Goguel V, Liao X, Rymond BC & Rosbash Μ (1991) U1 snRNP can influence 3′-splice site selection as well as 5′-splice site selection. Genes & Dev. 5: 1430–1438

    Article  CAS  Google Scholar 

  • Guthrie C (1988) Genetic analysis of yeast snRNAs. In: Birn-stiel Μ (Ed) Structure and Function of Major and Minor Small Nuclear Ribonucleoprotein Particles (pp 196–211 ). Springer-Verlag, Berlin, Heidelberg, New York

    Chapter  Google Scholar 

  • Guthrie C (1991) Messenger RNA splicing in yeast: Clues to why the spliceosome is a ribonuceoprotein. Science 253: 157–163

    Article  PubMed  CAS  Google Scholar 

  • Guthrie C & Patterson Β (1988) Spliceosomal snRNAs. Ann. Rev. Genet. 22: 387–419

    Article  PubMed  CAS  Google Scholar 

  • Hartwell LH, McLaughlin CS & Warner JR (1970) Identification of ten genes that control ribosome formation in yeast. Mol. Gen. Genet. 109: 42–56

    Google Scholar 

  • Herskowitz I (1987) Functional inactivation of genes by dominant negative mutations. Nature 329: 219–222

    Article  PubMed  CAS  Google Scholar 

  • Jacquier A (1990) Self-splicing group II and nuclear introns: how similar are they? TIBS 15: 351–354

    PubMed  CAS  Google Scholar 

  • Jacquier A, Rodriguez JR & Rosbash Μ (1985) A quantitative analysis of the effects of 5′ junction and TACTAAC box mutants and mutant combinations on yeast mRNA splicing. Cell 43: 423–430

    Article  PubMed  CAS  Google Scholar 

  • Jamieson DJ & Beggs JD (1991) A suppressor of yeast spp8l/ ded1 mutations encodes a very similar putative ATP-depend-ent RNA helicase. Mol. Microb. 5: 805–812

    Article  CAS  Google Scholar 

  • Jamieson DJ, Rahe Β, Pringle J & Beggs JD (1991) A suppressor of a yeast splicing mutation (prp8–1) encodes a putative ATP-dependent RNA helicase. Nature 349: 715–717

    Article  PubMed  CAS  Google Scholar 

  • King DS & Beggs JD (1990) Interactions of PRP2 protein with pre-mRNA splicing complexes in Saccharomyces cerevisiae. Nucleic Acids Res. 18: 6559–6564

    Article  PubMed  CAS  Google Scholar 

  • Last RL, Maddock JR & Woolford Jr JL (1987) Evidence for related functions of the RNA genes of Saccharomyces cerevisiae. Genetics 117: 619–631

    PubMed  CAS  Google Scholar 

  • Legrain Ρ & Choulika A (1990) The molecular characterisation of PRP6 and PRP9 yeast genes reveals a new cysteine/histi-dine motif common to several splicing factors. EMBO J. 9: 2775–2781

    PubMed  CAS  Google Scholar 

  • Legrain P, Seraphin Β & Rosbash Μ (1988) Early commitment of yeast pre-mRNA to the spliceosome pathway. Mol. Cell. Biol. 8: 3755–3760

    Google Scholar 

  • Lin R-J, Newman AJ, Cheng S-C & Abelson J (1985) Yeast mRNA splicing in vitro. J. Biol. Chem. 260: 14780–14792

    Google Scholar 

  • Lossky M, Anderson GJ, Jackson SP & Beggs JD (1987) Identification of a yeast snRNP protein and detection of snRNP-snRNP interactions. Cell 51: 1019–1026

    Article  PubMed  CAS  Google Scholar 

  • Lührmann R, Kastner Β & Bach Μ (1990) Structure of spliceosomal snRNPs and their role in pre-mRNA splicing. Bio-chem. Biophys. Acta 1087: 265–292

    Google Scholar 

  • Lustig AJ, Lin R-J & Abelson J (1986) The yeast RNA gene products are essential for mRNAsplicing in vitro. Cell 47: 953–963

    Article  PubMed  CAS  Google Scholar 

  • Madhani HD, Bordonne R & Guthrie C (1990) Multiple roles for U6 snRNA in the splicing pathway. Genes & Dev. 4: 2264–2277

    Article  CAS  Google Scholar 

  • Miller AM (1984) The yeast MATal gene contains two introns. EMBO J. 3: 1061–1065

    PubMed  CAS  Google Scholar 

  • Miraglia L, Seiwert S, Igel AH & Ares Μ (1991) Limited functional equivalence of phylogenetic variation in small nuclear RNA: Yeast U2 RNA with altered branchpoint complementarity inhibits splicing and produces a dominant lethal pheno-type. PNAS 88: 7061–7065

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa N, Harashima S & Oshima Υ (1991) AAR2, a gene for splicing pre-mRNA of the MATal cistron in cell type control of Saccharomyces cerevisiae. Mol. Cell. Biol. 11: 5693–5700

    Google Scholar 

  • Newman A & Norman C (1991) Mutations in yeast U5 snRNA alter the specificity of 5′splice site cleavage. Cell 65: 115–123

    Article  PubMed  CAS  Google Scholar 

  • Parker R & Guthrie C (1985) A point mutation in the conserved hexanucleotide at a yeast 5′ splice site uncouples recognition, cleavage, and ligation. Cell 41: 107–118

    Article  PubMed  CAS  Google Scholar 

  • Parker R, Siliciano PG & Guthrie C (1987) Recognition of the TACTAAC box during mRNA splicing in yeast involved base pairing to the U2-like snRNA. Cell 49: 229–239

    Article  PubMed  CAS  Google Scholar 

  • Patterson Β & Guthrie C (1987) An essential yeast snRNA with a U5-like domain is required for splicing in vivo. Cell 49: 613–624

    Article  PubMed  CAS  Google Scholar 

  • Petersen-Bjorn S, Soltyk A, Beggs JD & Friesen JD (1989) PRP4 (RNA4) from Saccharomyces cerevisiae: its gene product is associated with the U4/U6 small nuclear ribonucleoprotein particle. Mol. Cell. Biol. 9: 3698–3709

    Google Scholar 

  • Pikielny CW, Rymond BC & Rosbash Μ (1986) Electrophoresis of ribonucleoproteins reveals an ordered assembly pathway of yeast splicing complexes. Nature 324: 341–345

    Article  PubMed  CAS  Google Scholar 

  • Ray BK, Lawson TG, Kramer JC, Cladras MH, Grifo JA, Abramson RD, Merrick WC & Thach RE (1985) ATP-dependent unwinding of messenger RNA structure by euka-ryotic initiation factors. J. Biol. Chem. 260: 7651–7658

    Google Scholar 

  • Rosbash Μ & Seraphin Β (1991) Who’s on first? The U1 snRNP-5′splice site interaction and splicing. TIBS 16: 187–190

    PubMed  CAS  Google Scholar 

  • Rosbash Μ, Harris PKW, Woolford JL & Teem JL (1981) The effect of temperature-sensitive RNA mutants on the transcription products from cloned ribosomal protein genes of yeast. Cell 24: 679–686

    Article  PubMed  CAS  Google Scholar 

  • Rozen F, Edery I, Meerovitch K, Dever TE, Merrick WC & Sonenberg Ν (1990) Bidirectional RNA helicase activity of eukaryotic translation initiation fasctors 4A and 4F. Mol. Cell. Biol. 10: 1134–1144

    Google Scholar 

  • Ruby SW & Abelson J (1988) An early heirarchic role of U1 small nuclear ribonucleoprotein in spliceosome assembly. Science 242: 1028–1035

    Article  PubMed  CAS  Google Scholar 

  • Ruby SW & Abelson J (1991) Pre-mRNA splicing in yeast. TIG 7: 79–85

    PubMed  CAS  Google Scholar 

  • Schwer Β & Guthrie C (1991) PRP16 is an RNA-dependent ATPase that interacts transiently with the spliceosome. Nature 349: 494–499

    Article  PubMed  CAS  Google Scholar 

  • Seraphin Β & Rosbash Μ (1989) Identification of functional Ul snRNA-pre-mRNA complexes committed to spliceosome assembly and splicing. Cell 59: 349–358

    Article  PubMed  CAS  Google Scholar 

  • Seraphin B, Kretzner L & Rosbash Μ (1988) A Ul snRNA:pre-mRNA base pairing interaction is required early in yeast spliceosome assembly but does not uniquely define the 5′ cleavage site. EMBO J. 7: 2533–2538

    PubMed  CAS  Google Scholar 

  • Seraphin B, Abovich Ν & Rosbash Μ (1991) Genetic depletion indicates a late role for U5 snRNP during in vitro spliceosome assembly. Nucleic Acids Res. 19: 3857–3860

    Article  PubMed  CAS  Google Scholar 

  • Sharp PA (1987) Splicing of Messenger RNA precursors. Science 235: 766–771

    Article  PubMed  CAS  Google Scholar 

  • Shannon KW & Guthrie C (1991) Suppressors of a U4 snRNA mutation define a novel U6 snRNP protein with RNA-bind-ing motifs. Genes & Dev. 5: 773–785

    Article  CAS  Google Scholar 

  • Siliciano PG & Guthrie C (1988) 5′ splice site selection in yeast: genetic alterations in base-pairing with Ul reveal additional requirements. Genes & Dev. 2: 1258–1267

    Google Scholar 

  • Strauss EJ & Guthrie C (1991) A cold-sensitive mRNA splicing mutant is a member of the RNA helicase gene family. Genes & Dev. 5: 629–641

    Article  CAS  Google Scholar 

  • Tani Τ & Ohshima Υ (1989) The gene for the U6 small nuclear RNA in fission yeast has an intron. Nature 337: 87–90

    Article  PubMed  CAS  Google Scholar 

  • Tani Τ & Ohshima Υ (1991) mRNA-type introns in U6 small nuclear RNA genes: implications for the catalysis in pre-mRNA splicing. Genes & Dev. 5: 1022–1031

    Google Scholar 

  • Vijayraghavan U & Abelson J (1989) Pre-mRNA Splicing in yeast. In: Eckstein F and Lilley DMJ (Eds) Nucleic Acids and Molecular Biology, Vol. 3 (pp 197–215 ). Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  • Vijayraghavan U & Abelson J (1990) PRP18, a protein required for the second reaction in pre-mRNA splicing. Mol. Cell. Biol. 10: 324–332

    PubMed  CAS  Google Scholar 

  • Vijayraghavan U, Company Μ & Abelson J (1989) Isolation and characterisation of pre-mRNA splicing mutants of Sac-charomyces cerevisiae. Genes & Dev. 3: 1206–1216

    Article  CAS  Google Scholar 

  • Woolford JL (1989) Nuclear pre-mRNA splicing in yeast. Yeast 5: 439–458

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brown, J.D., Plumpton, M., Beggs, J.D. (1992). The genetics of nuclear pre-mRNA splicing: a complex story. In: Grivell, L.A. (eds) Molecular Biology of Saccharomyces . Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2504-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2504-8_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5104-0

  • Online ISBN: 978-94-011-2504-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics