Skip to main content

Excitatory amino acid receptors coupled to phosphoinositide metabolism: Characterization and possible role in physiology and physiopathology

  • Chapter
Amino Acids

Abstract

It is now widely established that a large variety of neurotransmitters activate receptors linked to phospholipase C. This enzyme catalyses the hydrolysis of membrane phosphoinositides to yield two second messengers; inositol triphosphate and diacylglycerol. The former acts by mobilizing intracellular Ca2+, the latter by stimulating protein kinase C [1,2]. Since the first publications [3–5] indicating that excitatory amino acids (EAAs) stimulate the phosphoinositide cascade in rat striatal neurons, granule cells and hippocampal slices, a large number of reports have confirmed and extended these previous findings using various models [6–8]. However, until recently, the characterization of the EAAs receptor involved in the increase in inositol phosphates (IPs) production remained rather obscure. For instance, ibotenate, a rigid structural analogue of glutamate, was reported as the most active of the EAAs in stimulating IPs formation in adult rat hippocampal slices [5] while EAAs were found inactive in this same area [9]. In primary cultures of striatal neurons [3], in Xenopus oocytes injected with rat brain mRNA [10], in granule cells [4] and in rat brain synaptoneurosomes [7] quisqualate, another glutamate agonist, proved to be the most efficient EAAs agonist for inositol phospholipid hydrolysis. These apparent discrepancies may originate from various key factors which may be identified as: 1) the experimental model (slices, cells in culture or membrane vesicles), 2) the anatomical origin of the model (hippocampus, cerebellum, striatum…), 3) the age of the animal used and to a lesser extent 4) the species. In fact, in slices or cells in culture, the IPs formation induced by neuroactive substances results from several events which are: the direct effect of the substance tested on its receptor coupled to the phosphoinositide metabolism, but also indirect effects due for example to the release of other substances able to stimulate or to inhibit themselves the IPs synthesis. The choice of a given brain structure may lead to the study of a specific receptor particularly enriched in that region and linked to IPs formation. Finally, the density and the pharmacological characteristics of receptors may change during development. These considerations may explain the rather confusing situation concerning the EAAs receptors involved in IPs production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berridge MJ (1987) A. Rev. Biochem. 56: 159–193.

    Article  CAS  Google Scholar 

  2. Downes CP and Michell RH (1985) In: Cohen P and Housley MD (eds.) Molecular Mechanism of Transmembrane Signalling. Elsevier, Amsterdam, pp. 3–56.

    Google Scholar 

  3. Sladeczek F, Pin J-P, Récasens M, Bockaert J and Weiss S (1985) Nature 317: 717–719.

    Article  PubMed  CAS  Google Scholar 

  4. Nicoletti F, Wroblewski JT, Novelli A, Alho H, Guidotti A and Costa E (1986) J. Neurosci. 6: 1905–1911.

    PubMed  CAS  Google Scholar 

  5. Nicoletti F, Meek JL, Iadarola MJ, Chuang DM, Roth BL and Costa E (1986) J. Neurochem. 46: 40–46.

    Article  PubMed  CAS  Google Scholar 

  6. Pearce B, Albrecht J, Morrow C and Murphy S (1986) Neurosci. Lett. 72: 335–340.

    Article  PubMed  CAS  Google Scholar 

  7. Récasens M, Sassetti I, Nourigat A, Sladeczek F and Bockaert J (1987) Eur. J. Pharmacol. 141: 87–93.

    Article  PubMed  Google Scholar 

  8. Schoepp DD and Johnson BG (1988) J. Neurochem. 50: 1605–1613.

    Article  PubMed  CAS  Google Scholar 

  9. Baudry M, Evans J and Lynch G (1986) Nature 319: 329–331.

    Article  PubMed  CAS  Google Scholar 

  10. Sugiyama H, Ito I and Hirono C (1987) Nature 325: 531–533.

    Article  PubMed  CAS  Google Scholar 

  11. Hollingsworth EB, McNeal ET, Burton JL, Williams RJ, Daly JW and Creveling CR (1985) J. Neurosci. 5: 2240–2253.

    PubMed  CAS  Google Scholar 

  12. Hollingsworth EB, Sears EB, De La Cruz RA, Gusovsky F and Daly JW (1986) Biochim. Biophys. Acta 883: 15–25.

    Google Scholar 

  13. Gusovsky F, Hollingsworth EB and Daly JW (1986) Proc. Natl. Acad. Sci. USA 83: 3003–3007.

    Google Scholar 

  14. Schwartz RD, Jackson JA, Weigert D, Skolnick P and Paul SM (1985) J. Neurosci. 5: 2963–2970.

    PubMed  CAS  Google Scholar 

  15. Watkins JC and Evans RH (1981) A. Rev. Pharmac. Toxic. 21: 165–204.

    Article  CAS  Google Scholar 

  16. Fagg GE, Foster AC and Ganong AH (1986) Trends Pharmacol. Sci. 7: 357–363.

    CAS  Google Scholar 

  17. Bone EA, Fretten P, Palmer S, Kirk CJ and Michell RH (1984) Biochem. J. 221: 803–809.

    PubMed  CAS  Google Scholar 

  18. Récasens M, Guiramand J, Nourigat A, Sassetti I and Devilliers G (1988) Neurochem. Int. 13: 463–467.

    Article  PubMed  Google Scholar 

  19. Guiramand J, Sassetti I and Récasens M (1989) Int. J. Dev. Neurosci. 7: 257–266.

    Google Scholar 

  20. Akaike N, Kawai N, Kiskin NI, Kljuchko EM, Krishtal OA and Tsyndrenko A (1987) Neurosci. Lett. 79: 326–330.

    Article  PubMed  CAS  Google Scholar 

  21. Sugiyama H, Ito I and Hirono C (1987) Nature 325: 531–533.

    Article  PubMed  CAS  Google Scholar 

  22. Nicoletti F, Wroblewski JT and Costa E (1987) J. Neurochem. 48: 967–973.

    Article  PubMed  CAS  Google Scholar 

  23. Monahan JB and Michel J (1987) J. Neurochem. 48: 1699–1708.

    Article  PubMed  CAS  Google Scholar 

  24. Schoepp DD and Johnson BG (1988) J. Neurochem. 50: 1605–1613.

    Article  PubMed  CAS  Google Scholar 

  25. Palmer E, Monaghan DT and Cotman CW (1988) Mol. Brain Res. 4: 161–165.

    Article  CAS  Google Scholar 

  26. Krogsgaard-Larsen P, Nielsen E and Curtis DR (1984) J. Med. Chem. 27: 585–591.

    Article  PubMed  CAS  Google Scholar 

  27. Nielsen E, Schousboe A, Hansen SH and Krogsgaard-Larsen P (1985) J. Neurochem. 45: 725–731.

    Article  PubMed  CAS  Google Scholar 

  28. Gusovsky F, McNeal ET and Daly JW (1987) Mol. Pharmacol. 32: 479–487.

    PubMed  CAS  Google Scholar 

  29. Gusovsky F and Daly JW (1988) Neuropharmacology 27: 95–105.

    Article  PubMed  CAS  Google Scholar 

  30. Toggenburgen G, Wiklund L, Henke H and Cuenod M (1983) J. Neurochem. 41: 1606–1613.

    Article  Google Scholar 

  31. Recasens M, Fagni L, Baudry M and Lynch G (1984) Neurochem. Int. 6: 325–332.

    Article  PubMed  CAS  Google Scholar 

  32. Barnes DM (1986) Science 234: 1325–1326.

    Google Scholar 

  33. Balazs R, Hack N and Jorgensen OS (1988) Neurosci. Lett. 87: 80–86.

    Article  PubMed  CAS  Google Scholar 

  34. Pearce IA, Cambray-Deakin MA and Burgoyne RD (1987) FEBS Lett. 223: 143–147.

    Article  PubMed  CAS  Google Scholar 

  35. Izumi Y, Miyakawa H, Ito K and Kato H (1987) Neurosci. Lett. 83: 201–206.

    Article  PubMed  CAS  Google Scholar 

  36. Lovinger DM, Wong K, Murakami K and Routtenberg A (1987) Brain Res. 436: 177–183.

    Article  PubMed  CAS  Google Scholar 

  37. Nicoletti F, Wroblewski JT, Alho H, Eva C, Fadda E and Costa E (1987) Brain Res. 436: 103–112.

    Article  PubMed  CAS  Google Scholar 

  38. Chen C-K, Silverstein FS, Fisher SK, Statman D and Johnston MV (1988) J. Neurochem. 51: 353–359.

    Article  PubMed  CAS  Google Scholar 

  39. Iadarola MJ, Nicoletti F, Naranjo JR, Putnam F and Costa E (1986) Brain Res. 374: 174–178.

    Article  Google Scholar 

  40. Akiyama K, Yamada N and Sato M (1987) Exp. Neurol. 98: 499–508.

    Article  PubMed  CAS  Google Scholar 

  41. Greenamyre JT, Penney JB, D’Amato CJ and Young AB (1987) J. Neurochem. 48: 543–551.

    Article  PubMed  CAS  Google Scholar 

  42. Monaghan DT, Geddes JW, Yao D, Chung C and Cotman CW (1987) Neurosci. Lett. 73: 197–200.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 ESCOM Science Publishers B.V.

About this chapter

Cite this chapter

Récasens, M., Guiramand, J. (1990). Excitatory amino acid receptors coupled to phosphoinositide metabolism: Characterization and possible role in physiology and physiopathology. In: Lubec, G., Rosenthal, G.A. (eds) Amino Acids. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2262-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2262-7_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-72199-04-1

  • Online ISBN: 978-94-011-2262-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics