Skip to main content

Time scales and fluctuations of protein dynamics: metmyoglobin in aqueous solution

  • Chapter
Principles of Molecular Recognition

Abstract

Dynamic motions in biological systems are thought to play a very important role in determining their functionality and material properties [1]. Both theoretical and experimental methods of studying kinetics and molecular dynamics have become valuable tools for understanding biomolecular function [2]. The fundamental fluctuations in both main-chain and side-chain positions provide a wealth of detail into structures and mechanisms responsible for the various functional roles that proteins play.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Karplus and J.A. McCammon (1983) Annu. Rev. Biochem. 52, 263–300.

    Article  CAS  Google Scholar 

  2. C.L. Brooks, M. Karplus and B.M. Pettitt (1988) in Advances in Chemical Physics, Vol. 71, eds. S. Rice and I. Prigogine Wiley, New York

    Chapter  Google Scholar 

  3. J.A. McCammon and S. Harvey (1987) Dynamics of Proteins and Nucleic Acids, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  4. R.M. Levy, R.P. Sheridan, J.W. Keepers, G.S. Dubey, S. Swaminathan and M. Karplus (1985) Biophys J. 48, 509–518.

    Article  CAS  Google Scholar 

  5. R.F. Tilton, U.C. Singh, I.D. Kuntz and P.A. Kollman (1988) J. Mol. Biol. 199,195–211.

    Article  CAS  Google Scholar 

  6. G.N. Phillips (1990) Biophys J. 57, 318–383.

    Article  Google Scholar 

  7. See for instance: S.J. Weiner, P.A. Kollman, D.A. Case, U.C. Singh, C. Ghio, G. Alagona, S. Profeta and P. Weiner (1984) J. Am. Chem. Soc. 106, 825–833.

    Article  Google Scholar 

  8. L.J. Kagen (1973) Myoglobin: Biochemical, Physiological and Clinical Aspects, Columbia Press, New York.

    Google Scholar 

  9. J.C. Kendrew, R.E. Dickerson, B.E. Strandberg, R.G. Hart, D.R. Davies, D.C. Phillips and V.C. Shore (1960) Nature 185, 422–427.

    Article  CAS  Google Scholar 

  10. K. Kuczera, J. Kuriyan and K. Karplus (1990) J. Mol. Biol. 213, 351.

    Article  CAS  Google Scholar 

  11. M. Levitt and R. Sharon (1988) Proc. Natl. Acad. Sci. USA 85, 7557.

    Article  CAS  Google Scholar 

  12. W.A. Gilbert, J. Kuriyan, G.A. Petsko and D.R. Ponzi in Structure and Dynamics: Nucleic Acids and Proteins, eds. E. Clementi and R.H. Sarma, Adenine Press, New York, 405–420

    Google Scholar 

  13. F. Parak, E.N. Frolou, R.L. Mössbauer and V.I. Goldanskii (1981) J. Mol. Biol. 145, 825–833.

    Article  CAS  Google Scholar 

  14. T. Takano (1977) J. Mol. Biol. 110, 537–568.

    Article  CAS  Google Scholar 

  15. F.C. Bernstein, T.F. Koetzle, G.T.B. Williams, E.F. Meyer, M.D. Brice, J.R. Rodgers, O. Kennard, T. Shimanouchi and M. Tasumi (1977) J. Mol. Biol. 112, 535.

    Article  CAS  Google Scholar 

  16. P.K. Weiner and P.A. Kollman (1981) J. Comp. Chem. 2, 287

    Article  CAS  Google Scholar 

  17. S.J. Weiner, P.A. Kollman, D.T. Nguyen and D.A. Case (1986) J. Comp. Chem. 7, 230.

    Article  CAS  Google Scholar 

  18. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren and J. Hermans in Intermodular Forces, ed. B. Pullman, D. Reidel, Dordrecht, p. 331.

    Google Scholar 

  19. L. Verlet (1967) Phys. Rev. 159, 98.

    Article  CAS  Google Scholar 

  20. D.A. Pearlman and P.A. Kollman in Computer Simulations of Biomolecular Systems, eds. W.V. Gunsteren and P. Weiner, Escom, Leiden, p. 101.

    Google Scholar 

  21. R.J. Loncharich and B.R. Brooks (1989) Proteins 6, 32.

    Article  CAS  Google Scholar 

  22. G.N. Phillips, R.M. Arduini, B.A. Springer and S.G. Sligar (1990) Proteins: Structure, Functional Genetics (in press).

    Google Scholar 

  23. M.W. Makinen and A.L. Fink (1977) Annu. Rev. Biophys. Bioeng. 6, 301–343.

    Article  CAS  Google Scholar 

  24. K. Wüthrich (1989) Science 243, 45–50.

    Article  Google Scholar 

  25. B.K. Lee and F.M. Richards (1971) J. Mol. Biol. 55, 379.

    Article  CAS  Google Scholar 

  26. D. Rojewska and R. Elber (1990) Proteins 7, 265.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Findsen, L.A., Subramanian, S., Lounnas, V., Pettitt, B.M. (1993). Time scales and fluctuations of protein dynamics: metmyoglobin in aqueous solution. In: Buckingham, A.D., Legon, A.C., Roberts, S.M. (eds) Principles of Molecular Recognition. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2168-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2168-2_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4959-7

  • Online ISBN: 978-94-011-2168-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics