Genetic engineering of lactobacilli, leuconostocs and Streptococcus thermophilus



The lactic acid bacteria represent a large heterogeneous family of microorganisms that share the property of converting fermentable carbohydrates primarily to lactic acid. The homofermentative lactic acid bacteria convert one mole of glucose to two moles of lactic acid, while the heterofermentative lactic acid bacteria convert one mole of glucose to one mole of lactic acid and a variety of other products such as acetic acid, ethanol and CO2. The family includes very diverse species that naturally occupy quite different ecological niches. Lactic acid bacteria are found on plant surfaces, on external cavities of human and animal bodies, as commensal colonizers of the gastrointestinal systems of vertebrates, as well as in sewage and manure. They are used extensively for the manufacture of a variety of fermented food and feed products. Although they are best known for application in the preparation of fermented dairy products (i.e. cheeses, sour milks, yogurts), lactic acid bacteria are also used in the pickling of vegetables, baking, wine-making, curing of fish, meats and sausages, preparation of silage, remediation of biowastes and the commercial manufacture of lactic acid (Kandler and Weiss, 1986). Due to the global economic importance of the agro-food sector, our knowledge of the lactic acid bacteria has benefited from an intensive research activity over the last decade. For economic, practical and historical reasons attention has been focused primarily on lactococci and the streptococci of medical importance.


Lactic Acid Bacterium Lactobacillus Plantarum Lactobacillus Acidophilus Bacteriocin Production Lactobacillus Casei 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmad, K.A. and Stewart, G.S.A.B. (1988) Cloning of the lux genes into Lactobacillus casei and Streptococcus lactis: phosphate-dependent light production. Biochem. Soc. Trans., 1068.Google Scholar
  2. Ahn, C., Collins-Thompson, C., Duncan, C. and Stiles, M.E. (1992) Mobilization and location of the genetic determinant of chloramphenicol resistance from Lactobacillus plantarum CAT2R. Plasmid, 27, 169–176.PubMedGoogle Scholar
  3. Ahrn, S., Molin, G. and Ståhl, S. (1989) Plasmids in Lactobacillus isolated from meat and meat products. Syst. Appl. Microbiol., 11, 320–325.Google Scholar
  4. Alpert, C.A. and Chassy, B.M. (1988) Molecular cloning and nucleotide sequence of the factor III(lac) gene of Lactobacillus casei. Gene, 62, 277–288.PubMedGoogle Scholar
  5. Alpert, C.A. and Chassy, B.M. (1990) Molecular cloning and DNA sequence of lacE, the gene encoding the lactose-specific enzyme II of the phosphotransferase system of Lactobacillus casei: Evidence that a cysteine residue is essential for sugar phosphorylation. J. Biol. Chem., 265(36), 22560–22561.Google Scholar
  6. Arendt, E.K., Lonvard, A. and Hammes, W.P. (1991) Lysogeny of Leuconostoc oenos. J. Gen. Microbiol., 137, 2135–2139.PubMedGoogle Scholar
  7. Arendt, E.K., Neve, H. and Hammes, W.P. (1991b) Characterization of phage isolates from a phage-carrying culture of Leuconostoc oenos 58N. Appl. Microbiol., and Biotech., 34(2), 220–224.Google Scholar
  8. Atlan, D., Laloi, P. and Portalier, R. (1990) X-Prolyl-dipeptidyl aminopeptidase of Lactobacillus delbruecklii spp. bulgaricus: characterization of the enzyme and isolation of deficient mutants. Appl. Environ. Microbiol., 56, 2174–2179.PubMedGoogle Scholar
  9. Axelsson, L.T., Ahrné, S.E.I., Andersson, M.C. and Stahl, S.R. (1988) Identification and cloning of a plasmid-encoded erythromycin resistance determinant from Lactobacillus reuteri. Plasmid, 20, 171–174.PubMedGoogle Scholar
  10. Baik, B.H. and Pack, M.Y. (1990) Expression of a Bacillus subtilis endoglucanase gene in Lactobacillus acidophilus. Biotechnol. Lett., 12, 330–334.Google Scholar
  11. Bates, E.E. and Gilbert, H.J. (1989) Characterization of a cryptic plasmid from Lactobacillus plantarum. Gene, 85, 253–258.PubMedGoogle Scholar
  12. Bates, E.E.M., Gilbert, H.J., Hazlewood, G.P., Huckle, J., Laurie, J.I. and Mann, S.P. (1989) Expression of a Clostridium thermocellum endoglucanase gene in Lactobacillus plantarum. Appl. Environ. Microbiol., 55., 2095–2097.Google Scholar
  13. Benbadis, L., Faelen, M., Slos, P., Fazel, A. and Mercenier, A. (1990) Characterization and comparison of virulent bacteriophages of Streptococcus thermophilus isolated from yogurt. Biochimie, 72(12), 855–862.PubMedGoogle Scholar
  14. Benbadis, L., Garel, J.-R. and Hartley, D.L. (1991) Purification, properties and sequence specificity of SslI, a new type II restriction endonuclease from Streptococcus salivarius subsp. thermophilus. Appl. Environ. Microbiol., 57, 3677–3678.Google Scholar
  15. Bently, R.W., Leigh, J.A. and Collins, M.D. (1991) Intergeneric structure of Streptococcus based on comparative analysis of small- subunit rRNA. Int. J. System. Bacteriol., 41, 487–494.Google Scholar
  16. Boizet, B., Flickinger, J.L. and Chassy, B.M. (1988) Transfection of Lactobacillus bulgaricus protoplasts by phage DNA. Appl. Environ. Microbiol., 54, 3014–3018.PubMedGoogle Scholar
  17. Boot, H.J., Kolen, C.P.A.M., Van Noort, J.H. and Pouwels, P.H. (1993) 5-layer protein of Lactobacillus acidophilus ATCC 4356: Purification, expression in Eschericha coli and nucleotide sequence of the corresponding gene. J. Bacteriol., in press.Google Scholar
  18. Bouia, A., Bringel, F., Frey, L., Kammerer, B., Belarbi, A., Goyonvarch, A., and Hubert, J.C. (1989) Structural organization of pLP-1, a cryptic plasmid from Lactobacillus plantarum CCM1904. Plasmid, 22(3), 185–192.PubMedGoogle Scholar
  19. Breidt, F.J. and Stewart, G.C. (1986) Cloning and expression of the gene phospho-β-galactosidase of Staphylococcus aureus in Escherichia coli. J. Bacteriol., 166, 1061–1066.PubMedGoogle Scholar
  20. Breidt, F.J. and Stewart, G.C. (1987) Nucleotide and deduced amino acid sequences of the Staphylococcus aureus phospho-β-galactosidase gene. Appl. Environ. Microbiol., 53, 969–973.PubMedGoogle Scholar
  21. Bringel, F., Frey, L. and Hubert, J.C. (1989) Characterization, cloning, curing, and distribution in lactic acid bacteria of pLP1, a plasmid from Lactobacillus plantarum CCM 1904 and its use in shuttle vector construction. Plasmid, 22(3), 193–202.PubMedGoogle Scholar
  22. Buvinger, W.E. and Riley, M. (1985) Nucleotide sequence of Klebsiella pneumoniae lac genes. J. Bacteriol., 163, 850–857.PubMedGoogle Scholar
  23. Chang, B.-S., and Mahoney, R.R. (1989) Purification and thermostability of β-galactosidase (lactase) from an autolytic strain of Streptococcus salivarius subsp. thermophilus. J. Dairy Res., 56, 117–127.PubMedGoogle Scholar
  24. Chassy, B.M. (1987) Prospects for the genetic manipulation of lactobacilli. FEMS Microbiol. Rev., 46, 297–312.Google Scholar
  25. Chassy, B.M. and Alpert, C.A. (1989) Molecular characterization of the plasmid-encoded lactose-PTS of Lactobacillus casei. FEMS Microbiol. Rev., 63(1–2), 157–166.Google Scholar
  26. Chassy, B.M. and Flickinger, J.L. (1987) Transformation of Lactobacillus casei by electroporation. FEMS Microbiol. Lett., 44, 173–177.Google Scholar
  27. Chassy, B.M., Gibson, E.V. and Giuffrida, A. (1978) Evidence for plasmid-associated lactose metabolism in Lactobacillus casei subsp. casei. Current Microbiol., 1, 141–144.Google Scholar
  28. Chassy, B.M., Mercenier, A. and Flickinger, J. (1988) Transformation of bacteria by electroporation. Trends Biotechnol., 6, 303–309.Google Scholar
  29. Chassy, B.M. and Rokaw, E. (1981) Conjugal transfer of plasmid-associated lactose metabolism in Lactobacillus casei subsp. casei. In Molecular Biology, Pathogenesis and Ecology of Bacterial Plasmids, New York: Plenum Press, p 590.Google Scholar
  30. Christiaens, H., Leer, R.J., Pouwels, P.H. and Verstraete, W. (1992) Cloning and expression of a conjugated bile acid hydrolase gene from Lactobacillus plantarum using a direct plate assay. Appl. Environ. Microbiol., 58, 3792–3798.PubMedGoogle Scholar
  31. Claassen, E., Pouwels, P.H., Posno, H. and Boersha, W. (1993) Development of safe oral vaccines based on Lactobacillus as a vector. In: Recombinant Vaccines: New Vaccinology (ed. E. Kurstak) Int. Comp. Virology Org., Montreal, in press.Google Scholar
  32. Cocconcelli, P.S., Gasson, M.J., Morelli, L. and Bottazzi, V. (1991) Single-stranded DNA plasmid, vector construction and cloning of Bacillus stearothermophilus α-amylase in Lactobacillus. Research in Microbiol., 142(6), 643–652.Google Scholar
  33. Cocconcelli, P.S. Morelli, L., Vescovo, M. and Bottazzi, V. (1986) Intergeneric protoplast fusion in lactic acid bacteria. FEMS Microbiol Lett., 35, 211–214.Google Scholar
  34. Collins, M.D., Rodrigues, U., Ash, C., Aguirre, M., Farrow, J.A.E., Martinez-Murcia, A., Phillips, B.A., Williams, A.M. and Wallbanks, S. (1991) Phylogenetic analysis of the genus Lactobacillus and related lactic acid bacteria as determined by reverse transcriptase sequencing of 16S rRNA. FEMS Microbiol. Lett., 77(1), 5–12.Google Scholar
  35. Copeland, W.C., Domena, J.D. and Robertus, J.D. (1989) The molecular cloning, sequence and expression of the hdc B gene from Lactobacillus 30A. Gene, 85(1), 259–266.PubMedGoogle Scholar
  36. Dao, M.L. and Ferretti, J.J. (1985) Streptococcus-Escherichia coli shuttle vector pSA3 and its use in the cloning of streptococcal genes. Appl. Environ. Microbiol., 49, 115–119.PubMedGoogle Scholar
  37. David, S. (1992) Genetics of mesophilic citrate fermenting lactic acid bacteria. Doctoral Dissertation, Rijksuniversiteit Wageningen.Google Scholar
  38. David, S., Simons, G. and de Vos, W.M. (1989) Plasmid transformation by electroporation of Leuconostoc paramesenteroides and its use in molecular cloning. Appl. Environ. Microbiol., 55, 1483–1489.PubMedGoogle Scholar
  39. David, S., Stevens, H., van Riel, M., Simons, G. and de Vos, W.M. (1992) Leuconostoc lactis β-galactosidase is encoded by two overlapping genes. J. Bacteriol., 174, 4475–481.PubMedGoogle Scholar
  40. Davidson, B.E., Powell, I.B. and Hillier, A.J. (1990) Temperate bacteriophages and lysogeny in lactic acid bacteria. FEMS Microbiol. Rev., 87, (1–2), 79–90.Google Scholar
  41. Davis, C., Silveira, N.F.A. and Fleet, G.H. (1985) Occurrence and properties of bacteriophages of Leuconostoc oenos in Australian wines. Appl. Environ. Microbiol., 50, 872–876.PubMedGoogle Scholar
  42. De Los Reyes-Gavilan, C.G., Limsowtin, G.K.Y., Sechaud, L. and Veaux, M. (1990) Evidence for a plasmid-linked restriction-modification system in Lactobacillus helveticus. Appl. Environ. Microbiol., 56(11), 3412–3419.Google Scholar
  43. De Rossi, E., Brigidi, P., Rossi, M., Matteuzzi, D. and Riccardi, G. (1991) Characterization of Gram-positive broad host-range plasmids carrying a thermophilic replicon. Research in Microbiol., 142(4), 389–396.Google Scholar
  44. De Rossi, E. et al. (1989) Preliminary studies on the correlation between the plasmid plHJ1 and its proteolytic activity in Lactobacillus helveticus S36.2. Physical mapping and molecular cloning of the plasmid in Escherichia coli. Microbiologica, 12, 273–276.Google Scholar
  45. De Vos, W.M. (1987) Gene cloning and expression in lactic streptococci. FEMS Microbiol. Rev., 46, 281–295.Google Scholar
  46. De Vos, W.M., Boerrigter, I., Van Rooyen, R.J., Reiche, B. and Hengstenberg, W. (1990) Characterization of the lactose-specific enzymes of the phosphototransferase system in Lactococcus lactis. J. Biol. Chem., 265(36), 22554–22560.PubMedGoogle Scholar
  47. De Vos, W.M., Simons, G. and David, S. (1989) Gene organization and expression in the mesophilic lactic acid bacteria. J. Dairy Sci., 72, 3398–3405.Google Scholar
  48. Debarbouillé, M., Martin-Verstraete, I., Arnaud, M., Klier, A. and Rapoort, G. (1991) Positive and negative regulation controlling expression of the sac genes in Bacillus subtilis. Res. Microbiol., 142, 757–764.PubMedGoogle Scholar
  49. Dunny, G.H., Lee, L.N. and LeBlanc, D.J. (1991) Improved electroporation and cloning vector system for Gram-positive bacteria. Appl. Environ. Microbiol., 57, 1194–1201.PubMedGoogle Scholar
  50. Duwat, P., Ehrlich, D.S. and Gruss, A. (1992). Use of degenerate primers for polymerase chain reaction cloning and sequencing of the Lactococcus lactis spp. lactis recA gene. Appl. Environ. Microbiol., 58, 2674–2678.PubMedGoogle Scholar
  51. Eggimann, B. and Bachmann, H. (1980) Purification and partial characterization of an aminopeptidase from Lactobacillus lactis. Appl. Environ. Microbiol., 40, 876–882.PubMedGoogle Scholar
  52. Fantuzzi, L. (1991) Instability of lactose and citrate metabolism of Leuconostoc strains. Biotechnol. Lett., 13, 433–436.Google Scholar
  53. Farrow, J.A.E. and Collins, M.D. (1984) DNA base composition, DNA-DNA homology and long-chain fatty acid studies on Streptococcus thermophilus and Streptococcus salivarius. J. Gen. Microbiol., 130, 357–362.PubMedGoogle Scholar
  54. Fayard, B., Haefliger, M. and Accolas, J.P. (1993) Interaction of temperate bacteriophages of Streptococcus salivarius subsp. thermophilus with lysogenic indicators affect phage DNA restriction patterns and host ranges. J. Dairy Sci., in press.Google Scholar
  55. Fernandes, C.F., Shahani, K.M. and Ames, M.A. (1987) Therapeutic role of dietary lactobacilli and lactobacillic fermented dairy products. FEMS Microbiol. Rev., 46, 343–356.Google Scholar
  56. Fitzgerald, G.F. and Gasson, M.J. (1988) In vivo gene transfer systems and transposons. Biochimie, 70(4), 489–502.PubMedGoogle Scholar
  57. Flickinger, J.L., Porter, E.V. and Chassy, B.M. (1986) Molecular cloning of a plasmid-encoded β-galactosidase from Lactobacillus casei. In 86th Ann. Meeting Amer. Soc. Microbiol., ASM Publications.Google Scholar
  58. Fremaux, C. (1990) Application de la biologie moléculaire à la connaissance des bactéries lactiques du vin — identification par sondes nucléiques — étude de plasmides de Leuconostoc oenos. Doctoral Dissertation, University of Bordeaux, France.Google Scholar
  59. Friedland, I.R., Snipelisky, M. and Khoosal, M. (1990) Meningitis in a neonate caused by Leuconostoc sp. J. Clin. Microbiol., 28(9), 2125–2126.PubMedGoogle Scholar
  60. Gaetje, G., Mueller, V. and Gorrschalk, G. (1991). Lactic acid excretion via carrier-mediated facilitated diffusion in Lactobacillus helveticus. Applied Microbiology and Biotechnology, 34(6), 778–782.Google Scholar
  61. Gaier, W. (1991) Untersuchungen zur transformation und gene expression bei Laktobazillen. Doctoral Dissertation, University of Hohenheim, Germany.Google Scholar
  62. Gaier, W., Vogel, R.F. and Hammes, W.P. (1992) Cloning and expression of the lysostaphin gene in Bacillus subtilis and Lactobacillus casei. Lett. Appl. Microbiol., 14, 72–76.PubMedGoogle Scholar
  63. Gasson, M.J. (1980) Production, regeneration and fusion of protoplasts in lactic streptococci. FEMS Microbiol. Lett., 9, 99–102.Google Scholar
  64. Gasson, M.J. (1990) In vivo genetic systems in lactic acid bacteria. FEMS Microbiol. Rev., 87(1–2), 43–60.Google Scholar
  65. Gibson, E.M., Chace, N.M., London, S.B. and London, J. (1979) Transfer of plasmid-mediated antibiotic resistance from streptococci to lactobacilli. J. Bacteriol., 137, 614–619.PubMedGoogle Scholar
  66. Gilliland, S.E. (1990) Health and nutritional benefits from lactic acid bacteria. FEMS Microbiol. Rev., 87(1–2), 175–188.Google Scholar
  67. Graves, M.C. and Rabinowitz, J.C. (1986). In vivo and in vitro transcription of the Clostridium pasteurianum ferredoxin gene. J. Biol. Chem., 261, 11409–11415.PubMedGoogle Scholar
  68. Gruss, A. and Erchlich, D. (1989) The family of highly interrelated single-stranded deoxyribonucleic acid plasmids. Microbiol. Rev., 53, 231–241.PubMedGoogle Scholar
  69. Hall, B.G., Betts, P.W. and Wootton, J.C. (1989) DNA sequence analysis of artificially evolved ebg enzyme and ebg repressor genes. Genetics, 123, 635–648.PubMedGoogle Scholar
  70. Hancock, K.R., Rockman, E., Young, C.A., Pearce, L., Maddox, I.S. and Scott, D.B. (1991). Expression and nucleotide sequence of the Clostridium acetobutylicum β-galactosidase gene cloned in Escherichia coli. J. Bacteriol., 173, 3084–3095.PubMedGoogle Scholar
  71. Handwerger, S., Horowitz, H., Coburn, K., Kolokathis, A. and Wormser, G.P. (1990) Infection due to Leuconostoc sp. — 6 cases and review. Rev. of Infect. Diseases, 12(4), 602–610.Google Scholar
  72. Harlander, S. (1987) Gene transfer systems in lactic streptococci. In J.J. Ferretti and R.C. Curtiss (eds.), Streptococcal Genetics Washington, D.C.: ASM Publications, pp. 229–233.Google Scholar
  73. Hastings, J.W. (1992). Cloning and nucleotide sequence of a Leuconostoc bacteriocin operon. In 92nd General Meeting of the American Society for Microbiology, 92, New Orleans, Louisiana, USA, Abstr. Gen. Meet. Am. Soc. Microbiol., p. 333.Google Scholar
  74. Hastings, J.W., Sailer, M., Johnson, K., Roy, K.L., Vederas, J.C. and Stiles, M.E. (1991) Characterization of Leucocin A-Val 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. J. Bacteriol., 173, 7491–7500.PubMedGoogle Scholar
  75. Hengstenberg, W., Penberthy, W.K., Hill, K.L. and Morse, M.L. (1968) Metabolism of lactose by Staphylococcus aureus. J. Bacteriol., 96, 2187–2188.PubMedGoogle Scholar
  76. Henick-Kling, T., Lee, T.H. and Nicholas, D.J.D. (1986) Inhibition of bacterial growth and malolactic fermentation in wine by bacteriophage. Appl. Bacteriol., 86, 287–293.Google Scholar
  77. Higgins, C.F., Ames, G.F.L., Barnes, W.M., Clement, J.M. and Hofnug, M. (1982). A novel intercistronic regulatory element of prokaryotic operons. Nature, 298, 760–762.PubMedGoogle Scholar
  78. Hirata, H., Fukazawa, T., Negoro, S. and Okada, H. (1986). Structure of a β-galactosidase gene of Bacillus stearothermophilus. J. Bacteriol., 166, 122–121.Google Scholar
  79. Holck, A. and Naes, H. (1992) Cloning, sequencing, and expression of the gene encoding the cell-envelope-associated proteinase from Lactobacillus paracasei spp. paracasei NCDO 151. J. Gen. Microbiol., 138, 1353–1364.PubMedGoogle Scholar
  80. Hutkins, R.W. and Morris, H.A. (1987) Carbohydrate metabolism by Streptococcus thermophilus: a review. J. Food Protect., 50, 876–894.Google Scholar
  81. Hutkins, R.W. and Ponne, C. (1991) Lactose uptake driven by galactose efflux in Streptococcus thermophilus — Evidence for a galactose-lactose antiporter. Appl. Environ. Microbiol., 57(4), 941–944.PubMedGoogle Scholar
  82. Imam, S.H., Burgess-Cassler, A., Cote, G.L., Gordon, S.H. and Baker, F.L. (1991) A study of cornstarch granule digestion by an unusually high molecular weight α-amylase secreted by Lactobacillus amylovorus. Curr. Microbiol., 22(6), 365–370.Google Scholar
  83. Ishiwa, H. and Iwata, S. (1980) Drug resistance plasmids in Lactobacillus fermentum. J. Gen Appl. Microbiol., 26, 71–74.Google Scholar
  84. Iwata, M., Mada, M. and Ishiwa, H. (1986) Protoplast fusion of Lactobacillus fermentum. Appl. Environ. Microbiol., 52, 392–393.PubMedGoogle Scholar
  85. Jacob, S., Allmansberger, R., Gartner, D. and Hillen, W. (1991) Catabolite repression of the operon for xylose utilization from Bacillus subtilis W23 is mediated at the level of transcription and depends on a cis site in the xylA reading frame. Mol. Gen. Genet., 229, 189–196.PubMedGoogle Scholar
  86. Jahns, A., Schafer, A., Geis, A. and Teuber, M. (1991) Identification, cloning and sequencing of the replication region of Lactococcus lactis spp. lactis biovar. diacetylactis Bu2 citrate plasmid pSL2. FEMS Microbiol. Lett., 80, 253–258.Google Scholar
  87. Janzen, T., Kleinschmidt, J., Neve, H. and Geis, A. (1992) Sequencing and characterization of pST1 a cryptic plasmid from Streptococcus thermophilus. FEMS Microbiol. Lett., 95, 175–180.Google Scholar
  88. Jarvis, A.W. (1989) Bacteriophages of lactic acid bacteria. J. Dairy Sci., 72, 3406–3428.Google Scholar
  89. Jimeno, J., Casey, M. and Hofer, F. (1984) The occurrence of β-galactosidase and P-β-galactosidase in Lactobacillus casei strains. FEMS Microbiol. Lett., 25, 275–278.Google Scholar
  90. Johansen, E. and Kibenich, A. (1992) Isolation and characterization of IS1165 an insertion sequence of Leusonostoc mesenteroides spp. cremoris and other lactic acid bacteria. Plasmid, 27, 200–206.PubMedGoogle Scholar
  91. Jones, S. and Warner, P.J. (1990) Cloning and expression of a-amylase from Bacillus amyloliquefaciens in a stable plasmid vector in Lactobacillus plantarum. Lett. in Appl. Microbiol., 11(4), 214–219.Google Scholar
  92. Josson, K., Soetaert, P., Michiels, F., Joos, H. and Mahillon, J. (1990) Lactobacillus hilgardii plasmid pLAB1000 consists of two functional cassettes commonly found in other Gram-positive organisms. J. of Bacteriol., 172(6), 3089–3099.Google Scholar
  93. Kaklij, G.S., Kelkar, S.M., Shenoy, M.A. and Sainis, K.B. (1991) Antitumor activity of Streptococcus thermophilus against fibrosarcoms: Role of T-cells. Cancer Lett., 56(1), 37–44.PubMedGoogle Scholar
  94. Kalnins, A., Otto, K., Ruether, U. and Mueller-Hill, B. (1983) Sequence of the lacL gene of Escherichia coll. EMBO J, 2, 593–597.PubMedGoogle Scholar
  95. Kaminogawa, S., Ninomiya, T. and Yamauchi (1984) Aminopeptidase profiles of lactic streptococci. J. Dairy Sci., 67, 2483–2492.Google Scholar
  96. Kandler, O. (1983) Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek, 49, 209–224.PubMedGoogle Scholar
  97. Kandler, O. and Weiss, N. (1986) Bergey’s Manual of Systematic Bacteriology. In P.H.A. Sneath, N.S. Mair, M.E. Sharpe, and J.G. Holt (eds.), Baltimore: Williams & Wilkins, pp. 1208–34.Google Scholar
  98. Khalid, N.M. and Marth, E.M. (1990) Purification and partial characterization of a prolyl-dipeptidyl aminopeptidase farm Lactobacillus helveticus CNRZ 32. Appl. Environ. Microbiol., 56, 381–388.PubMedGoogle Scholar
  99. Kitao, S. and Nakano, E. (1992) Cloning of the sucrose phosphorylase gene from Leuconostoc mesenteroides and its overexpression using a ‘sleeper’ phage. J. Ferment, and Bioeng., 73, 179–184.Google Scholar
  100. Klaenhammer, T.R. (1987) Plasmid-directed mechanisms for bacteriphage defense in lactic streptococci. FEMS Micro. Rev., 46, 313–325.Google Scholar
  101. Klaenhammer, T.R. (1988) Bacteriocins of lactic acid bacteria. Biochimie, 70, 303–316.Google Scholar
  102. Klebanoff, S.J. and Coombs, R.W. (1991) Viricidal effect of Lactobacillus acidophilus on human immunodeficiency virus type 1: Possible role in heterosexual transmission. J. Exp. Med., 174(1), 289–292.PubMedGoogle Scholar
  103. Kojic, M., Fira, D., Banina, A. and Topisirovic, L. (1991) Characterization of the cell wall-bound proteinase of Lactobacillus casei HN14. Appl. and Environ. Microbiol., 57(6), 1753–1757.Google Scholar
  104. Kok, J. (1990) Genetics of the proteolytic system of the lactic acid bacteria. FEMS Microbiol. Rev., 87(1–2), 15–42.Google Scholar
  105. Kok, J. (1991) Special-purpose cloning vectors for lactococci. In G.M. Dunny, P.P. Cleary, and L.L. McKay (eds.), Genetics and Molecular Biology of Streptococci, Lactococci and Enterococci, Washington, D.C.: ASM Publications, pp. 97–102.Google Scholar
  106. Kok, J., van der Vossen, J.M.B.M. and Venema, G. (1984) Construction of plasmid cloning vectors for lactic streptococci which also replicate in Bacillus subtilis and Escherichia coli. Appl Environ. Microbiol., 48, 726–731.PubMedGoogle Scholar
  107. Kok, J. and Venema, G. (1988) Genetics of proteinases of lactic acid bacteria. Biochimie, 70, 475–488.PubMedGoogle Scholar
  108. Kondo, J.K. and McKay, L.L. (1982) Transformation of Streptococcus lactis protoplasts by plasmid DNA. Appl. Environ. Microbiol., 43, 1213–1215.PubMedGoogle Scholar
  109. Kreuzer, P., Gratner, D., Allmansberger, R. and Hillen, W. (1989) Identification and sequence analysis of the Bacillus subtilis xylR gene and xyl operator. J. Bacteriol., 171, 3840–3845.PubMedGoogle Scholar
  110. Lahbib-Mansais, Y., Boizet, B., Dupont, L., Mata, M. and Ritzenthaler, P. (1992) Characterization of a temperate bacteriophage of Lactobacillus delbrueckii spp. bulgaricus and its interactions with the host cell chromosome. J. Gen. Microbiol., 138, 1139–1146.Google Scholar
  111. Larbi, D., Decaris, B. and Simonet, J.M. (1992) Different bacteriophage resistance mechanisms in Streptococcus salivarius subsp. thermophilus. J. Dairy Res., 59, 349–357.PubMedGoogle Scholar
  112. Le Bourgeois, P., Lautier, M. and Ritzenthaler, P. (1993) Chromosome mapping in Lactic Acid Bacteria. FEMS Microbiol. Rev., 12, (1–3), 109–123.PubMedGoogle Scholar
  113. Lee, W.T., Flynn, T.G., Lyons, C., and Levy, H.R. (1991) Cloning of the gene and amino acid sequence for glucose 6-phosphate dehydrogenase from Leuconostoc mesenteroides. J. Biol. Chem., 266, 13028–13034.PubMedGoogle Scholar
  114. Leenhouts, K.J., Tolner, B., Bron, S., Kok, J., Venema, G. and Seegers, J. (1991) Nucleotide sequence and characterization of the broad-host-range lactococcal plasmid pWV01. Plasmid, 26, 55–56.PubMedGoogle Scholar
  115. Leer, R., Christiaens, H., Peters, L., Posno, M. and Pouwels, P. (1993) Gene-disruption in Lactobacillus plantarum strain 80 by site-specific recombination: isolation of a mutant strain deficient in conjugated bile salt hydrolase activity. Mol. Gen. Genet., in press.Google Scholar
  116. Leer, R.J., Van Luijk, N., Posno, M. and Pouwels, P.H. (1992) Structural and functional analysis of two cryptic plasmids from Lactobacillus pentosus MD353 and Lactobacillus plantarun ATCC 8014. Mol. Gen. Genet., 234, 265–274.PubMedGoogle Scholar
  117. Leong-Morgenthaler, P., Zwahlen, M.C. and Hottinger, H. (1991) Lactose metabolism in Lactobacillus bulgaricus: Analysis of the primary structure and expression of the genes involved. J. of Bacteriol., 173(6), 1951–1957.Google Scholar
  118. Lerch, H.-P., Frank, R. and Collins, J. (1989) Cloning, sequencing and expression of the L-2-hydroxyisocaproate dehydrogenase-encoding gene of Lactobacillus confusus in Escherichia coli. Gene, 83, 263–270.PubMedGoogle Scholar
  119. Lerch, H.P., Blocker, H., Kallwas, H., Hoppe, J., Tsai, H. and Collins, J. (1989b) Cloning, sequencing and expression in Escherichia coli of the d-2-hydroxyisocaproate dehydrogenase gene of Lactobacillus casei. Gene, 78, 47–57.PubMedGoogle Scholar
  120. Lin, J., Schmitt, P. and Divies, C. (1991) Characterization of a citrate-negative mutant of Leuconostoc mesenteroides spp. mesenteroides: Metabolic and plasmidic properties. Appl. Microbiol. and Biotech., 34(5), 628–631.Google Scholar
  121. Lin, J.H.-C. and Savage, D. C. (1986) Genetic transformation of rifampicin resistance in Lactobacillus acidophilus. J. Gen. Microbiol. 132, 2107–2111.PubMedGoogle Scholar
  122. Liu, M.L., Kondo, J.K., Barnes, M. B. and Bartholomeu, D.T. (1988) Plasmid-linked maltose utilization in Lactobacillus spp. Biochimie, 70, 351–355.PubMedGoogle Scholar
  123. Lokman, B.C., van Santen, P., Verdoes, J.C., Kruse, J., Leer, J.R., Posno, M. and Pouwels, P.H. (1991) Organization and characterization of three genes involved in d-xylose catabolism in Lactobacillus pentosus. Mol. Gen. Genet., 230, 161–169.PubMedGoogle Scholar
  124. Luchansky, J.B., Kleeman, E.G., Raya, R.R. and Klaenhammer, T.R. (1989) Genetic transfer systems for delivery of plasmid DNA, deoxyribonucleic acid, to Lactobacilus acidophilus ADH: Conjugation, electroporation, and transduction. J. of Dairy Sci., 72(6), 1408–1417.Google Scholar
  125. Luchansky, J.B., Muriana, P.M. and Klaenhammer, T.R. (1988) Application of electroporation for transfer of plasmid DNA to Lactobacillus, Lactococcus, Leuconostoc, Listeria, Pediococcus, Bacillus, Staphylococcus, Enterococcus and Propionibacterium. Mol. Microbiol., 2, 637–646.PubMedGoogle Scholar
  126. Machuga, E.J. and Ives, D.H. (1984) Isolation and characterization of an aminopeptidase from Lactobacillus acidophilus R–26. Biochem. Biophys. Acta, 789, 26–36.PubMedGoogle Scholar
  127. Macrina, F.L., Tobian, J.A., Jones, K.R., Evans, R.P. and Clewell, D.B. (1982) A cloning vector able to replicate in Escherichia coli and Streptococcus sanguis. Gene, 19, 345–353.PubMedGoogle Scholar
  128. Martinez-Murcia, A.J. and Collins, M.D. (1990b) Nucleotide sequence of 16S ribosomal RNA from Lactobacillus kandleri and Lactobacillus minor. Nucl. Acid Res., 18, 3401.Google Scholar
  129. Martinez-Murcia, A.J. and Collins, M.D. (1990) Nucleotide sequence of 16S ribosomal RNA from Lactobacillus viridescens and Lactobacillus confusus. Nucl. Acid Res., 18, 3402.Google Scholar
  130. Mata, M. and Ritzenthaler, P. (1988) Present state of lactic acid bacteria phage taxonomy. Biochimie, 70, 395–400.PubMedGoogle Scholar
  131. McKay, L.L. (1982) Regulation of lactose metabolism in dairy streptococci. In R. Davies Developments in Food Microbiology, Essex, Applied Science Publishers Ltd., pp. 153–182.Google Scholar
  132. McKay, L.L. (1983). Functional properties of plasmids in lactic streptococci. Antonie van Leeuwenhoek J. Microbiol., 49, 259–274.PubMedGoogle Scholar
  133. McKay, L.L. and Baldwin, K. (1978) Stabilization of lactose metabolism in Streptococcus lactis C2. Appl. Environ. Microbiol., 36, 360–367.PubMedGoogle Scholar
  134. McKay, L.L. and Baldwin, K.A. (1990) Applications for biotechnology: present and future improvements in lactic acid bacteria. FEMS Microbiol Rev., 87(1–2), 3–14.Google Scholar
  135. Mercenier, A. (1990) Molecular genetics of Streptococcus thermophilus. FEMS Microbiol. Rev., 87(1–2), 61–78.Google Scholar
  136. Mercenier, A. and Chassy, B.M. (1988) Strategies for the development of bacterial transformation systems. Biochimie, 70, 503–517.PubMedGoogle Scholar
  137. Mercenier, A. and Lemoine, Y. (1989) Genetics of Streptococcus thermophilus: A review. J. Dairy Sci., 72, 3444–3454.Google Scholar
  138. Mercenier, A. Robert, C., Romero, D.A., Castellino, I., Slos, P. and Lemoine, Y. (1989) Development of an efficient spheroplast transformation procedure for Streptococcus thermophilus: the use of transfection to define a regeneration medium. Biochimie, 70, 567–577.Google Scholar
  139. Mercenier, A., Robert, C, Romero, D.A., Slos, P. and Lemoine, Y. (1987) In J.J. Ferretti & R.C. Curtiss (eds.), Streptococcal Genetics, Washington, D.C., ASM Publications, pp. 234–239.Google Scholar
  140. Mercenier, A., Slos, P., Faelen, M. and Lecocq, J.-P. (1988) Plasmid transduction in Streptococcus thermophilus. Molec. Gen. Genet., 212, 386–389.PubMedGoogle Scholar
  141. Meyer, J. and Jordi, R. (1987) Purification and characterization of X-prolyl-dipeptidyl-aminopeptidase from Lactobacillus lactis and from Streptococcus thermophilus. J. Dairy Sci., 70, 738–745.PubMedGoogle Scholar
  142. Mills, O.E. and Thomas, T.D. (1981). Nitrogen sources for growth of lactic streptococci in milk. N.Z.J. Dairy Sci. Technol., 15, 43–55.Google Scholar
  143. Mollet, B. and Delley, M. (1990) Spontaneous deletion formation within the β-galactosidase gene of Lactobacillus bulgaricus. J. Bacteriol., 172, 5670–5676.PubMedGoogle Scholar
  144. Mollet, B. and Delley, M. (1991) A β-galactosidase deletion mutant of Lactobacillus bulgaricus reverts to generate an active enzyme by internal DNA sequence duplication. Molec. Gen. Genet., 227(1), 17–21.PubMedGoogle Scholar
  145. Mollet, B., Knol, J., Poolman, B., Marciset, O. and Delley, M. (1993) Directed genomic integration, gene replacement and integrative gene expression in Streptococcus thermophilus. J. Bacteriol., 175, 4315–4324.PubMedGoogle Scholar
  146. Moran Jr., C.P., Lang, N., LeGrice, S.F.J., Lee, G., Stephens, M., Soneshein, A.L., Pero, J. and Losick, R. (1982) Nucleotide sequences that signal the initiation of transcription and translation in Bacillus subtilis. Mol. Gen. Genet., 186, 339–346.PubMedGoogle Scholar
  147. Morelli, L., Cocconcelli, P.S., Bottazzi, V., Damiani, G., Ferretti, L. and Sgaramella, V. (1987). Lactobacillus protoplast transformation. Plasmid, 17, 73–79.PubMedGoogle Scholar
  148. Morelli, L., Vescovo, M. and Bottazzi, V. (1983) Identification of chloramphenicol resistance plasmids in Lactobacillus reuteri and Lactobacillus acidophilus. Int. J. Microbiol., 1, 1–5.Google Scholar
  149. Morse, M.L., Hill, K.L., Egan, J.B. and Hengstenberg, W. (1968) Metabolism of lactose by Staphylococcus aureus and its genetic basis. J. Bacteriol., 95, 2270–2274.PubMedGoogle Scholar
  150. Mortvedt, C.I. and Nes, I.F. (1990) Plasmid-associated bacteriocin production by a Lactobacillus sake strain. J. of Gen. Microbiol., 136(8), 1601–1608.Google Scholar
  151. Muriana, P. and Klaenhammer, T.R. (1987) Conjugal transfer of plasmid-encoded determinants for bacteriocin production and immunity in Lactobacillus acidophilus 88. Appl. Environ. Microbiol., 53., 553–560.PubMedGoogle Scholar
  152. Muriana, P.M. and Klaenhammer, T.R. (1991) Cloning, phenotypic expression, and DNA sequence of the gene for Lactocin F, an antimicrobial peptide produced by Lactobacillus spp. J. Bacteriol., 173(5), 1779–1788.PubMedGoogle Scholar
  153. Naes, H. and Nissen-Meyer, J. (1992) Purification and amino-terminal amino acid sequence determination of the cell-wall-bound proteinase from Lactobacillus paracasei spp. paracasei. J. Gen. Microbiol., 138, 313–318.PubMedGoogle Scholar
  154. Nakamura, L.K. (1981) Lactobacillus amylovorus, a new starch-hydrolyzing species from cattle waste-corn fermentations. Int. J. Syst. Bacteriol., 31(1), 56–63.Google Scholar
  155. Nakamura, L.K. and Crowell, C.D. (1979) Lactobacillus amylophilus, a new starch-hydrolyzing species from swine waste-corn fermentation. Dev. Indust. Microbiol., 20, 531–540.Google Scholar
  156. Natori, Y., Kano, Y. and Imamoto, F. (1990) Nucleotide sequences and genomic constitution of five tryptophan genes of Lactobacillus casei. J. Biochem. (Tokyo), 107(2), 248–255.Google Scholar
  157. Nel, L., Wingfield, D., Van der Meer, L.J. and Van Vuuren, H.J.J. (1987) Isolation and characterization of Leuconostoc oenos bacteriophages from wine and sugarcane. FEMS Micro. Lett., 44, 63–67.Google Scholar
  158. Neve, H., Krush, U. and Teuber, M. (1990) Virulent and temperate bacteriophages of thermophilic lactic acid streptococci. FEMS Microbiol., 87, P58.Google Scholar
  159. O’Sullivan, T. and Daly, C. (1982) Plasmid DNA in Leuconostoc species. Irish J. Food Sci. Technol., 6, 206.Google Scholar
  160. Oppenheim, D.S. and Yanofsky, C. (1980) Transitional coupling during expression of the tryptophan operon of Escherichia coli. Genetics., 5, 785–795.Google Scholar
  161. Orberg, P.K. and Sandine, W.E. (1984). Common occurrence of plasmid DNA and vancomycin resistance in Leuconostoc spp. Appl. Environ. Microbiol., 48, 1129–1133.PubMedGoogle Scholar
  162. Oskouian, B. and Stewart, G.C. (1990) Expression and catabolite repression of the lactose operon of Staphylococcus aureus., J. Bacteriol., 172, 3804–3812.PubMedGoogle Scholar
  163. Park, S.F. and Stewart, G.S.A.B. (1990) High efficiency transformation of Listeria monocytogenes by electroporation of penicillin-treated cells. Gene, 94, 129–132.PubMedGoogle Scholar
  164. Platt, T. (1986) Transcription termination and the regulation of gene expression. Ann. Rev. Biochem., 55, 339–372.PubMedGoogle Scholar
  165. Poolman, B., Royer, T.J., Mainzer, S.E. and Schmidt, B.F. (1989) Lactose transport system of Streptococcus thermophilus: A hybrid protein with homology to the melibiose carrier and enzyme III of phosphoenolpyruvate-dependent phosphotransferase systems. J. Bacteriol., 171(1), 244–253.PubMedGoogle Scholar
  166. Poolman, B., Royer, T.J., Mainzer, S.E. and Schmidt, B.F. (1990) Carbohydrate utilization in Streptococcus thermophilus: characterization of the genes for aldolase-1-epimerase (mutarotase) and UDP-glucose 4-epimerase. J. Bacteriol., 172, 4037–4047.PubMedGoogle Scholar
  167. Porter, E.V. and Chassy, B.M. (1988) Nucleotide sequence of the β-d-phospho-galactoside galactohydrolase gene of Lactobacillus casei: comparison to analogous pbg genes of other Gram-positive organisms. Gene, 62, 263–276.PubMedGoogle Scholar
  168. Posno, M., Heuvelmans, P.T.H.M., Van Giezen, M.J.F., Lokman, B.C., Leer, R.J. and Pouwels, P.H. (1991) Complementation of the inability of Lactobacillus strains to utilize d-xylose with d-xylose catabolism-encoding genes of Lactobacillus pentosus. Appl. Environ. Microbiol., 57, 2764–2766.PubMedGoogle Scholar
  169. Posno, M., Leer, R.J., VanLuijk, N., VanGeizen, M.J.F. and Heuvelmans, P.T.H.M. (1991b). Incompatibility of Lactobacillus vectors with replicons derived from small cryptic Lactobacillus plasmids and segregational instability of the introduced vectors. Appl. Environ. Microbiol., 57(6), 1822–1828.Google Scholar
  170. Pouwels, P.H., Leer, R.J. and Posno, M. (1992) Genetic modification of Lactobacillus: A new approach toward strain improvement. In Actes du Colloque Lactic 91, pp. 133–148.Google Scholar
  171. Pouwels, P.H., Vanluijk, N., Leer, R.J. and Posno, M. (1993) Control of replication of the Lactobacillus pentosus plasmid p353–2: Evidence for a mechanism involving transcriptions attenuation of the gene coding for the replication protein. Molec. Gen. Genet., in press.Google Scholar
  172. Powell, L.B., Achen, M.G., Hillier, A.J. and Davidson, B.E. (1988) A simple and rapid method for genetic transformation of lactic streptococci by electroporation. Appl. Environ. Microbiol., 54, 655–660.PubMedGoogle Scholar
  173. Pucci, M.J., Monteschio, M.E. and Kemker, C.L. (1988) Intergeneric and intrageneric conjugal transfer of plasmid-encoded antibiotic resistance determinants in Leuconostoc spp. Appl. Environ. Microbiol., 54, 281–287.PubMedGoogle Scholar
  174. Raya, R.R., Fremaux, C., de Antoni, G.L. and Klaenhammer, T.R. (1992) Site-specific integration of the temperate bacteriophage ϕADH into the Lactobacillus gasseri chromosome and molecular characterization of the phage attP and bacterial attB attachment sites. J. Bacteriol., 174, 5584–5592.PubMedGoogle Scholar
  175. Raya, R.R. and Klaenhammer, T.R. (1992) High-frequency plasmid transduction by Lactobacillus gasseri bacteriophage PHI-ADH. Appl. Environ. Microbiol., 58, 187–193.PubMedGoogle Scholar
  176. Raya, R.R., Kleeman, E.G., Luchansky, J.B. and Klaenhammer, T.R. (1989) Characterization of the temperate bacteriphage ϕADH and plasmid transduction in Lactobacillus acidophilus ADH. Appl. Environ. Microbiol., 55(9), 2206–2213.PubMedGoogle Scholar
  177. Redondo-Lopez, V. (1990) Emerging role of lactobacilli in the control and maintenance of vaginal bacterial microflora. Rev. Infec. Dis., 12, 856–872.Google Scholar
  178. Reid, G., Bruce, A., McGroarty, J.A., Cheng, K.-J. and Costerton, J.W. (1990). Is there a role for lactobacilli in prevention of urogenital and intestinal infections? Clin. Microbiol. Rev., 3, 335–344.PubMedGoogle Scholar
  179. Reizer, J., Reizer, A. and Saier, M.H. (1990) The cellobiose permease of Escherichia coli consists of three proteins and is homologous to the lactose permease of Staphylococcus aureus. Res. in Microbiol., 141, 1061–1067.Google Scholar
  180. Rinckel, L.A. and Savage, D.C. (1990) Characterization of plasmids and plasmid-borne macrolide resistance from Lactobacilus sp. strain 100–33. Plasmid, 23, 119–125.PubMedGoogle Scholar
  181. Rixon, J.E. Hazlewood, G.P. and Gilbert, H.J. (1990) Integration of an unstable plasmid into the chromosome of Lactobacillus plantarum. FEMS Microbiol. Lett., 71(1–2), 105–110.Google Scholar
  182. Romero, D.A., Slos, P., Robert, C., Castellino, I. and Mercenier, A. (1987). Conjugative mobilization as an alternative vector delivery system for lactic streptococci. Appl. Environ. Microbiol., 53, 2405–2413.PubMedGoogle Scholar
  183. Roussel, Y., Colmin, C., Simonet, J.M. and Decaris, B. (1993) Strain characterization, genome size and plasmid content in the Lactobacillus acidophilus group (Hansen and Marquot). J. Appl. Bacteriol., 74, 549–556.PubMedGoogle Scholar
  184. Rygus, T. and Hillen, W. (1992) Catabolite repression of the xyl operon of Bacillus megaterium. J. Bacteriol., 174, 3049–3055.PubMedGoogle Scholar
  185. Sanders, M.E. (1988) Phage resistance in lactic acid bacteria. Biochimie, 70, 411–422.PubMedGoogle Scholar
  186. Sarra, et al. (1989) Antagonism and adhesion among isogenic strains of Lactobacillus reuteri in the caecum of gnotobiotic mice. Microbiologica, 12, 69–74.PubMedGoogle Scholar
  187. Scheirlinck, T., Mahillon, J., Joos, H., Dhaese, P. and Michiels, F. (1989) Integration and expression of a-amylase and endoglucanase genes in the Lactobacillus plantarum chromosome. Appl. and Environ. Microbiol., 55(9), 2130–2137.Google Scholar
  188. Scheler, A., Rygus, T., Allmansberger, R. and Hillen, W. (1991) Molecular cloning, structure, promoters, and regulatory elements for transcription of the Bacillus licheniformis encoded regulon for xylose utilization. Arch. Microbiol., 155, 526–534.PubMedGoogle Scholar
  189. Schillinger, U. and Lücke, F.K. (1989) Antimicrobial activity of Lactobacillus sake isolated from meat. Appl. Environ. Microbiol., 55, 1901–1906.PubMedGoogle Scholar
  190. Schleifer, K.H. (1987) Recent changes in the taxonomy of lactic acid bacteria. FEMS Microbiol. Rev., 46, 201–203.Google Scholar
  191. Schleifer, K.H., Ludwig, W., Amman, R., Heitel, C., Ehrmann, M., Köhler, W. and Krause, A. (1992) Phylogenetic relationships of lactic acid bacteria and their identification with nucleic acid probes. In Lactic 91, Caen: Centre de Publications de l’Universite de Caen, pp. 23–32.Google Scholar
  192. Schleifer, K.L., Ehrmann, M., Krush, U. and Neve, H. (1991) Revival of the Species of Streptococcus thermophilus (ex Orla-Jensen, 1919). Syst. Appl. Microbiol., 14, 386–388.Google Scholar
  193. Schmidt, B.F., Adams, R.M., Requadt, C., Power, S. and Mainzer, S.E. (1989) Expression and nucleotide sequence of the Lactobacillus bulgaricus β-galactosidase gene cloned in Escherichia coli. J. Bacteriol., 171(2), 625–635.PubMedGoogle Scholar
  194. Schroeder, C.J., Robert, C., Lenzen, G., McKay, L.L. and Mercenier, A. (1991) Analysis of the lacZ sequences from 2 Streptococcus thermophilus strains — comparison with the Escherichia coli and Lactobacillus bulgaricus β-galactosidase sequences. J. Gen. Microbiol., 137, 369–380.PubMedGoogle Scholar
  195. Sechaud, L. (1990) Caractérisation de 35 bactériophages de Lactobacillus helveticus. Doctoral Dissertation, INRA, Jouy en Joses, France.Google Scholar
  196. Sechaud, L., Cluzel, J.-P., Rousseau, M., Baumgartner, A. and Accolas, J.-P. (1988) Bacteriophages of lactobacilli. Biochimie, 70, 401–410.PubMedGoogle Scholar
  197. Shahbal, S., Hemme, D. and Desmazeaud, J. (1991) High cell wall-associated proteinase activity of some Streptococcus thermophilus strains (H-strains) correlated with a high acidification rate in milk. Le Lait, 71, 351–357.Google Scholar
  198. Shahbal, S., Hemme, D. and Renault, P. (1993) Characterization of a cell envelope-associated proteinase activity of Streptococcus thermophilus H-strains. Appl. Environ. Microbiol., 59, 177–182.PubMedGoogle Scholar
  199. Shankar, P.A. and Davies, F.L. (1977) Amino acid peptide utilization by Streptococcus thermophilus in relation to yogurt manufacture. J. Appl. Bacteriol., 43, 8–13.Google Scholar
  200. Shay, B.J., Egan, A., Wright, M. and Rogers, P. (1988) Cysteine metabolism in an isolate of Lactobacillus sake: plasmid composition and cysteine transport. FEMS Microbiol. Lett., 56, 183–188.Google Scholar
  201. Sherman, J.M. (1937) The streptococci. Bacteriol. Rev., 1, 3–97.PubMedGoogle Scholar
  202. Shimizu-Kadota, M. (1987) Properties of lactose plasmid pLY101 in Lactobacillus casei. Appl. Environ. Microbiol., 53, 2987–2991.PubMedGoogle Scholar
  203. Shimizu-Kadota, M., Flickinger, J.L. and Chassy, B.M. (1988) Evidence that Lactobacillus casei insertion element ISLI has a narrow host range. J. Bacteriol., 170(10), 4976–4978.PubMedGoogle Scholar
  204. Shimizu-Kadota, M., Kiwaki, M., Hirokawa, H. and Tsuchida, N. (1985) ISL1: a new transposable element in Lactobacillus casei. Mol. Gen. Genet., 200, 193–198.PubMedGoogle Scholar
  205. Shimizu-Kadota, M. and Kudo, S. (1984) Liposome-mediated transfection of Lactobacillus case spheroplasts. Agric. Biol. Chem., 48, 1105–1107.Google Scholar
  206. Shimizu-Kadota, M., Shibahara-Sone, H. and Ishiwa, H. (1991) Shuttle plasmid vectors for Lactobacillus casei and Escherichia coli with a minus origin. Appl. Environ. Microbiol., 57, 3292–3300.PubMedGoogle Scholar
  207. Shine, J. and Dalgarno, L. (1974) The 3′-terminal sequence of Escherichia coli 16S RNA: complementarity to non-sense triplets and ribosome binding sites. Proc. Natl. Acad. Sci USA, 71, 5463–5467.Google Scholar
  208. Shrago, A.W., Chassy, B.M. and Dobrogosz, W.J. (1986) Conjugal plasmid transfer (pAMβl) in Lactobacillus plantarum. Appl Environ. Microbiol., 52, 574–576.PubMedGoogle Scholar
  209. Shrago, A.W. and Dobrogosz, W.J. (1988) Conjugal transfer of group B streptococcal plasmids and comobilization of Escherichia coli-Streptococcus shuttle plasmids to Lactobacillus plantarum. Appl. Environ. Microbiol., 54, 824–826.PubMedGoogle Scholar
  210. Sibakov, M., Koivula, T., Von Wright, A. and Palva, I. (1991) Secretion of TEM β-lactamase with signal sequences isolated form the chromosome of Lactococcus lactis spp. lactis. Appl. and Environ. Microbiol., 57(2), 341–348.Google Scholar
  211. Simon, D. and Chopin, A. (1988) Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis. Biochimie. 70, 559–566.PubMedGoogle Scholar
  212. Skaugen, M. (1989) The complete nucleotide sequence of a small cryptic plasmid from Lactobacillus plantarum. Plasmid., 22, 175–179.PubMedGoogle Scholar
  213. Slos, P., Bourquin, J.C., Lemoine, Y. and Mercenier, A. (1991) Isolation and characterization of chromosomal promoters of Streptococcus salivarius spp. thermophilus. Appl. Environ. Microbiol., 57(5), 1333–1339.PubMedGoogle Scholar
  214. Smiley, M.B. and Fryder, V. (1978) Plasmids, lactic acid production, and N-acetyl-d-glucosamine fermentation in Lactobacillus helveticus Subsp. jugurti. Appl. Environ. Microbiol., 35, 777–781.PubMedGoogle Scholar
  215. Smith, M.D. and Clewell, D.B. (1984) Return of Streptococcus faecalis DNA cloned in Escherichia coli to its original host via transformation of Streptococcus sanguis followed by conjugative mobilization. J. Bacteriol., 160, 1109–1114.PubMedGoogle Scholar
  216. Solaiman, D.K.Y., and Somkuti, G.A. (1990) Isolation and characterization of a type II restriction endonuclease from Streptococcus thermophilus. FEMS Micro. Lett., 67, 261–266.Google Scholar
  217. Solaiman, D.K.Y., and Somkuti, G.A. (1991) A type-II restriction endonuclease of Streptococcus thermophilus. FEMS Microbiol Lett., 80(1), 75–80.Google Scholar
  218. Solaiman, D.K.Y., and Somkuti, G.A. (1992). DNA structures contributing to the instability of recombinant plasmids in Streptococcus thermophilus. Biotechnol. Lett., 14, 753–758.Google Scholar
  219. Somkuti, G.A., Solaiman, D.K.Y, and Steinberg, D.H. (1992) Expression of Streptomyces sp. cholesterol oxidase in Lactobacillus casei. Appl. Microbiol. Biotechnol., 37, 330–334.Google Scholar
  220. Somkuti, G.A. and Steinberg, D.H. (1988) Genetic transformation of Streptococcus thermophilus by electroporation. Biochimie, 70, 503–517.Google Scholar
  221. Somkuti, G.A. and Steinberg, D.H. (1991) DNA-DNA hybridization analysis of Streptococcus thermophilus plasmids. FEMS Microbiol. Lett., 78, 271–276.Google Scholar
  222. Sozzi, T., Maret, R. and Poulin, J.M. (1976). Mise en évidence de bactériophage dans le vin. Experientia, 32, 568–569.PubMedGoogle Scholar
  223. Stackebrandt, E., Fowler, V.J. and Woese, CR. (1983) A phylogenetic analysis of lactobacilli, Pediococcus pentosaceus and Leuconostoc mesenteroides. Syst. Appl. Microbiol., 4, 326–337.PubMedGoogle Scholar
  224. Stackenbrandt, E. and Teuber, M. (1988) Molecular taxonomy and phylogenetic position of lactic acid bacteria. Biochimie, 70, 317–324.Google Scholar
  225. Swenson, J.M., Facklam, R.R. and Thornsberry, C (1990) Antimicrobial susceptibility of vancomycin-resistant Leuconostoc, Pediococcus and Lactobacillus species. Antimicrobial Agents and Chemotherapy, 34(4), 543–549.PubMedGoogle Scholar
  226. Takiguchi, R., Hashiba, H., Aoyama, K. and Ishii, S. (1989) Complete nucleotide sequence and characterization of a cryptic plasmid from Lactobacillus helveticus spp. jugurti. Appl. Environ. Microbiol., 55(6), 1653–1655.PubMedGoogle Scholar
  227. Tannock, G.W. (1987) Conjugal transfer of plasmid pAMβl in Lactobacillus reuteri and between lactobacilli and Enterococcus faecalis. Appl. Environ. Microbiol, 53, 2693–2695.PubMedGoogle Scholar
  228. Thomas, T.D. and Pritchard, G.G. (1987). Proteolytic enzymes of dairy starter cultures. FEMS Microbiol Rev., 46, 245–268.Google Scholar
  229. Thompson, J. (1987) Regulation of sugar transport and metabolism in lactic acid bacteria. FEMS Microbiol. Rev., 46, 221–231.Google Scholar
  230. Thompson, J.K. and Collins, M.A. (1989) Evidence for the conjugal transfer of a plasmid pVA797::pSA3 co-integrate into strains of Lactobacillus helveticus. Lett. Appl. Microbiol., 9(2), 61–64.Google Scholar
  231. Thompson, K. and Collins, M. (1991) Molecular cloning in Lactobacillus helveticus by plasmid pSA3::pVA797 co-integrate formation and conjugal transfer. Appl. Microbiol. and Biotech., 35(3), 334–338.Google Scholar
  232. Tohyama, J.B., Sakurai, T. and Arai, H. (1971) Transduction by temperate phage PLS-1 in Lactobacillus salivarius. Jpn. J. Bacteriol., 26, 482–489.Google Scholar
  233. Toy, J. and Bognar, A.L. (1990) Cloning and expression of the gene encoding Lactobacillus casei Folylpoly-γ-glutamate synthetase in Escherichia coli and determination of its primary structure. J. Biol. Chem., 265(5), 2492–2499.PubMedGoogle Scholar
  234. Trevors, J.T., Chassy, B.M., Dower, W.J. and Blaschek, H.P. (1992) Electrotransformation of bacteria by plasmid DNA. In D.C. Chang, B.M. Chassy, J.A. Saunders, & A.E. Sowers (eds), Guide to Electroporation and Electrofusion San Diego, Academic Press, pp. 265–290.Google Scholar
  235. Tsai, H.J. and Sandine, W.E. (1987) Conjugal transfer of lactose-fermenting ability from Streptococcus lactis C2 to Leuconostoc cremoris CAF7 yields leuconostoc that ferment lactose and produce diacetyl. J. Indust. Microbiol., 2, 25–33.Google Scholar
  236. Tsai, H.J. and Sandine, W.E. (1987b) Conjugal transfer of nisin plasmid genes from Streptococcus lactis 7962 to Leuconostoc dextranicum 181. Appl. Environ. Microbiol., 53, 352–357.PubMedGoogle Scholar
  237. Van der Lelie, D., Van der Vossen, J.M.B.M. and Venema, G. (1988) Effect of plasmid incompatibility on DNA transfer to Streptococcus cremoris. Appl. Environ. Microbiol, 54., 865–871.PubMedGoogle Scholar
  238. Van Rooijen, R.J. and de Vos, W.M. (1991) Molecular cloning, transcriptional analysis, and nucleotide sequence of lacR, a gene encoding the repressor of the lactose phosphotransferase system of Lactococcus lactis. J. of Biol. Chem., 265(30), 18499–18503.Google Scholar
  239. Van Rooijen, R.J., Van Schalkwijk, S. and de Vos, W.M. (1991) Molecular cloning, characterization, and nucleotide sequence of the tagatose-6-phosphate pathway gene cluster of the lactose operon of Lactococcus lactis. J. Biol. Chem., 266(11), 7176–7181.PubMedGoogle Scholar
  240. Vanderslice, P., Copeland, W. and Robertus, J. (1986) Cloning and nucleotide sequence of wild type and a mutant histidine decarboxylase from Lactobacillus 30a. J. Biol. Chem., 261, 15186–15191.PubMedGoogle Scholar
  241. Vescovo, M., Morelli, L. and Bottazzi, V. (1982) Drug resistance plasmids in Lactobacillus acidophilus and Lactobacillus reuteri. Appl. Environ. Microbiol., 43, 50–56.PubMedGoogle Scholar
  242. Vescovo, M., Morelli, L., Bottazzi, V. and Gasson, M.J. (1983) Conjugal transfer of broad-host-range plasmid pAMβl into enteric species of lactic acid bacteria. Appl. Environ. Microbiol., 46, 753–755.PubMedGoogle Scholar
  243. Vidgrén, G., Palva, I., Pakkanen, R., Lounatmaa, K. and Palva, A. (1992) S-layer of Lactobacillus brevis: PCR cloning and determination of the nucleotide sequence. J. Bacteriol., 174, 7419–7427.PubMedGoogle Scholar
  244. Vogel, R.F., Gaier, W. and Hammes, W.P. (1990) Expression of the lipase gene from Staphylococcus hyicus in Lactobacilus curvatus Lc2-c FEMS Microbiol. Lett., 69, 289–292.Google Scholar
  245. Vujcic, M. and Topisirovic, L. (1993) Molecular analysis of the Rolling-Circle replicating plasmid pA1 of Lactobacillus plantarum A112. Appl. Environ. Microbiol., 59, 274–280.PubMedGoogle Scholar
  246. Weickert, M.J. and Chambliss, G.H. (1990) Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. Proc. Natl. Acad. Sci. USA, 87, 6238–6242.PubMedGoogle Scholar
  247. Weisburg, W.G., Tully, J.G., Rose, D.L., Petzel, J.P., Oyaizu, H., Yang, D., Mandelco, L., Sechrest, J., Lawrence, T.G., Van Etten, J., Maniloff, J. and Woese, CR. (1989) A phylogenetic classification of the mycoplasmas: Basis for their classification. J. Bacteriol., 171, 6455–6467.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

There are no affiliations available

Personalised recommendations