Advertisement

Bacteriophages and bacteriophage resistance

  • T. R. Klaenhammer
  • G. F. Fitzgerald

Abstract

Food and dairy fermentations rely on the growth and acid producing ability of the lactic acid bacteria. Many of these have remained as traditional fermentations, where the process is driven by the natural microflora associated with the raw material. Increasing consistency, improved quality and processing efficiencies have followed the development of controlled fermentations. These rely on the activity of a starter culture which is intentionally inoculated in order to drive the primary fermentation. However, with the increased control granted through the repeated use of a defined starter culture comes the potential for disruption of the fermentation by bacteriophage.

Keywords

Lactic Acid Bacterium Burst Size Phage Genome Phage Resistance Abortive Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Accolas, J.-P. and Spillman, H. (1979) The morphology of six bacteriophages of Streptococcus thermophilus. J. Appl. Bacteriol. 47, 135–144.Google Scholar
  2. Ackermann, H.W. and DuBow, M.S. (1987) Viruses of Prokaryotes, CRC Press, Inc., Boca, Raton, FL., U.S.A.Google Scholar
  3. Alatossava, T., and Klaenhammer, T.R. (1991) Molecular characterization of three small isometricheaded bacteriophages which vary in their sensitivity to the lactococcal phage resistance plasmid pTR2030. Appl. Environ. Microbiol. 57, 1346–1353.PubMedGoogle Scholar
  4. Alatossova, T., Forsman, P., Karvonen, P. and Vasala, A. (1987) Molecular biology of Lactobacillus lactis bacteriophage LL-H FEMS Microbiol. Rev. 46, 41 (Abstract).Google Scholar
  5. Anderson, D.G., and McKay, L.L. (1984) Genetic and physical characterization of recombinant plasmids associated with cell aggregation and high-frequency conjugal transfer in Streptococcus lactis ML3. J. Bacteriol. 158, 954–962.PubMedGoogle Scholar
  6. Arendt, E.K., Lonvaud, A. and Hammes, W.P. (1991) Lysogeny in Leuconostoc oenos. J. Gen. Microbiol. 137, 2135–2139.PubMedGoogle Scholar
  7. Baumgartner, A., Murphy, M., Daly, C. and Fitzgerald, G.F. (1986) Conjugative co-transfer of lactose and bacteriophage resistance plasmids from Streptococci cremoris UC653. FEMS Microbiol. Lett. 35, 233–237.Google Scholar
  8. Benbadis, L., Faelen, M, Castellino, I., Fazel, A., Mercenier, A. and Slos, P. (1987) Phages of Streptococcus thermophilus. F EMS Microbiol. Rev. 46, p.43. (Abstract)Google Scholar
  9. Benbadis, L., Faelen, M., Slos, P., Fazel, A., and Mercenier, A. (1990) Characterization and comparison of virulent bacteriophages of Streptococcus thermophilus isolated from yogurt. Biochimie 72, 855–862.PubMedGoogle Scholar
  10. Benbadis, L., Garel, J.-R., and Hartley, D.L. (1991) Purification, properties, and sequence specificity of SslI a new type II restriction endonuclease from Streptococcus salivarius subsp. thermophilus. Appl. Environ. Microbiol. 57, 3677–3678.PubMedGoogle Scholar
  11. Boizet, B., Lahbib-Mansais, Y., Dupont, L., Ritzenthaler, P. and Mata, M. (1990) Cloning, expression and nucleotide sequence of an endolysin gene of a Lactobacillus bulgaricus bacteriophage. FEMS Microbiol. Rev. 87, 60 (Abstract).Google Scholar
  12. Boizet, B., Mata, M., Mignot, O., Ritzenthaler, P. and Sozzi, T. (1992) Taxonomic characterization of Leuconostoc mesenteroides and Leuconostoc oenos bacteriophages. FEMS Microbiol. Lett. 90, 211–216..Google Scholar
  13. Boussemaer, J.P., Schrauwen, P.P., Sourrouille, J.L. and Guy, P. (1980) Multiple modification/restriction systems in lactic streptococci and their significance in defining a phagetyping system. J. Dairy Res. 47, 401–109.PubMedGoogle Scholar
  14. Braun, V., Hertwig, S., Neve, H., Geis, A. and Teuber, M. (1989) Taxonomic differentiation of bacteriophages of Lactococcus lactis by electron microscopy, DNA-DNA hybridization, and protein profiles. J. Gen. Microbiol. 135, 2551–2560.Google Scholar
  15. Budde-Niekiel, A. and Teuber, M. (1987) Electron microscopy of the adsorption of bacteriophages to lactic acid streptococci. Milchwissenschaft 42, 551–554.Google Scholar
  16. Callegari, M.L., Sechaud, L., Rousseau, M., Bottazzi, V. and Accolas, J.-P. (1992) The S-layer protein of Lactobacillus helveticus CNRZ892 contains the receptor for virulent phage 832–B1. Appl. Environ. Microbiol. (In press).Google Scholar
  17. Carminati, D. and Giraffa, G. (1992) Evidence and characterization of temperate bacteriophage in Streptococcus salivarius subsp. thermophilus St 18. J. Gen. Microbiol. 59, 71–79.Google Scholar
  18. Casey, C.N. (1991) Molecular and physical characterization of lysogenic and lytic lactococcal bacteriophages. PhD Thesis, National University of Ireland.Google Scholar
  19. Chopin, M-C., and Chopin, A. (1990) Improvement of phage resistance in lactic acid bacteria. Proceedings of the Sixth International Symposium on the Genetics of Industrial Microorganisms, Vol I, 467–476.Google Scholar
  20. Chopin, A., Chopin, M-C, Moillo-Batt, A. and Langella, P. (1984) Two plasmid-determined restriction and modification systems in Streptococcus lactis. Plasmid 11, 260–263.Google Scholar
  21. Chopin, M.-C, Chopin, A., Rouault, A. and Galleron, N. (1989) Insertion and amplification of foreign genes in the Lactococcus lactis subsp. lactis chromosome. Appl. Environ. Microbiol. 55, 1769–1774.PubMedGoogle Scholar
  22. Chow, J.J., Batt, C.A. and Sinskey, A.J. (1988) Characterization of Lactobacillus bulgaricus bacteriophage ch2. Appl. Environ. Microbiol. 54, 1138–1142.PubMedGoogle Scholar
  23. Chung, D.K., Chung, S.K., and Batt, C.A. (1992) Antisense RNA directed against the major capside protein of Lactococcus lactis subsp. cremoris bacteriophage 4–1 confers partial resistance to the host. Appl. Microbiol. Biotechnol. 37, 79–83.PubMedGoogle Scholar
  24. Cluzel, P.J., Chopin, A., Ehrlich, S.D., and Chopin, M.-C. (1991) Phage abortive infection mechanism from Lactococcus lactis subsp. lactis, expression of which is mediated by an iso-ISS1 element. Appl. Environ. Microbiol. 57, 3547–3551.PubMedGoogle Scholar
  25. Cluzel, P.J., Vlaux, M., Rousseau, M. and Accolas, J.-P. (1987) Evidence for temperate bacteriophages in two strains of Lactobacillus bulgaricus. J. Dairy Res. 54, 397–405.Google Scholar
  26. Coffey, A.G., Fitzgerald, G.F., and Daly, C. (1991a) Cloning and characterization of the determinant for abortive infection of bacteriophage from lactococcal plasmid pC1829. J. Gen. Microbiol. 137, 1355–1362.PubMedGoogle Scholar
  27. Coffey, A., Costello, V., Daly, C. and Fitzgerald, G. (1991b) Plasmid encoded bacteriophage insensitivity in members of the genus Lactococcus, with special reference to pCI829. In Genetics and Molecular Biology of Streptococci, Lactococci, and Enterococci (Dunny, G.M., Cleary, P.P., and McKay, L.L. eds), American Society for Microbiology, Washington, DC, pp. 131–135.Google Scholar
  28. Coffey, A.G., Fitzgerald, G.F. and Daly, C. (1989) Identification and characterization of a plasmid encoding abortive infection from Lactococcus lactis ssp. lactis UC811. Neth. Milk Dairy J. 43, 229–244.Google Scholar
  29. Coleman, J., Hirasuma, A., Inokuchi, Y. Green, P.J. and Inoye, M. (1985) A novel immune system against bacteriophage infection using complementary RNA (micRNA). Nature (London) 315, 601.Google Scholar
  30. Collins, E.B. (1958) Changes in the bacteriophage sensitivity of lactic streptococci. J. Dairy Sci. 41, 41–48.Google Scholar
  31. Collins, E.B. (1956) Host-controlled variations in bacteriophages active against lactic streptococci. Virology 2, 261–271.PubMedGoogle Scholar
  32. Costello, V. (1988) Characterization of bacteriophage-host interactions in Streptococcus cremoris UC503 and related lactic streptococci. PhD Thesis, The National University of Ireland.Google Scholar
  33. Coveny, J.A. (1989) Characterization of lactococcal bacteriophage based on morphology, host range, DNA restriction endonuclease patterns, DNA hybridization and structural protein profiles. PhD Thesis, National University of Ireland.Google Scholar
  34. Coveney, J.A., Fitzgerald, G.F., and Daly, C. (1987) Detailed characterization and comparison of four lactic streptococcal bacteriophages based on morphology, restriction mapping, DNA homology, and structural protein analysis. Appl. Environ. Microbiol. 53, 1439–1447.PubMedGoogle Scholar
  35. Daly, C. and Fitzgerald, G.F. (1982) Bacteriophage DNA restriction and the lactic streptococci. Microbiology — 1982, (Schlessinger, D., ed.) American Society, for Microbiology, Washington, D.C., pp. 213–216.Google Scholar
  36. Daly, C. and Fitzgerald, G.F. (1987) Mechanisms of bacteriophage insensitivity in the lactic streptococci. In Streptococcal Genetics (Ferretti, J. and Curtiss, R. eds.). American Society for Microbiology, Washington, D.C., U.S.A. pp. 259–268.Google Scholar
  37. Davidson, B.E., Powell, I.B., and Hillier, A.J. (1990) Temperate bacteriophages and lysogeny in lactic acid bacteria. FEMS Microbiol, Rev. 87, 79–90.Google Scholar
  38. Davies, F.L. and Gasson, M.J. (1984) Bacteriophage of dairy lactic acid bacteria. In Advances in the Microbiology and Biochemistry of Cheese and Fermented Milk (Davies, F.L. and Law, B.A., eds.). Elsevier Applied Science Publishers, New York, pp. 127–151.Google Scholar
  39. de Vos, W.M. (1989) On the carrier state of bacteriophages in starter lactococci: an elementary explanation involving a bacteriophage resistance plasmid. Neth. Milk Dairy J. 43, 221–227.Google Scholar
  40. de Vos, W.M. and Davies, F.L. (1984) Plasmid DNA in lactic streptococci: bacteriophage resistance and proteinase plasmids in Streptococcus cremoris SK11. Third European Congress on Biotechnology. Vol III, Verlag Chemie, Weinheim, pp. 201–205.Google Scholar
  41. de Vos, W.M., Underwood, H.M. and Davies, F.L. (1984) Plasmid encoded bacteriophage resistance in Streptococcus cremoris SK11. FEMS Microbiol. Lett. 23, 175–178.Google Scholar
  42. Dinsmore, P.K. and Klaenhammer, T.R. (1992) IS946-mediated integration of an abortive bacteriophage resistance gene (hsp) into the L. lactis subsp. lactis genome. J. Dairy Sci. 75, 113 (Abstract).Google Scholar
  43. Duckworth, D.H., Glenn, J. and McCorquodale, D.J. (1981) Inhibition of bacteriophage replication by extrachromosomal genetic elements. Microbiol. Rev. 45, 52–71.PubMedGoogle Scholar
  44. Dunny, G.M., Krug, D.A., Pan, C-L. and Ledford, R.A. (1988) Identification of cell wall antigens associated with a large conjugative plasmid encoding phage resistance and lactose fermentation ability in lactic streptococci. Biochimie 70, 443–450.PubMedGoogle Scholar
  45. Durmaz, E. and Klaenhammer, T.R. (1991) A fourth mechanism for bacteriophage resistance in Lactococcus lactis subsp. lactis ME2. J. Dairy Sci. 74, 120 (Abstract).Google Scholar
  46. Durmaz, E. and Klaenhammer, T.R. (1992) Molecular characterization of a second abortive phage resistance gene present in L. lactis subsp. lactis ME2. J. Bacteriol. 174, 7463–7469.PubMedGoogle Scholar
  47. Fitzgerald, G.F., Daly, C, Brown, L.R. and Gingeras, T.R. (1982) ScrFI: a new sequence-specific endonuclease from Streptococcus cremoris. Nucleic Acids Research 10, 8171–8179.Google Scholar
  48. Fitzgerald, G.F. and Gasson, M.J. (1988) In vivo gene transfer systems and transposons. Biochimie 70, 489–502.PubMedGoogle Scholar
  49. Forsman, P. and Alatossava, T. (1991) Genetic variation of Lactobacillus delbrueckii ssp. lactis phages isolated from cheese processing plants in Finland. Appl. Environ. Microbiol. 57, 1805–1812.PubMedGoogle Scholar
  50. Fremaux, C.F., De Antoni, G.L. and Klaenhammer, T.R. (1992) Genetic organization and sequence of the region encoding integrative functions from Lactobacillus gasseri temperate phage ϕadh. Gene 126, 61–66.Google Scholar
  51. Froseth, B.R., Harlander, S.K. and McKay, L.L. (1988) Plasmid-mediated reduced phage sensitivity in Streptococcus lactis KR5. J. Dairy Sci. 71, 275–284.PubMedGoogle Scholar
  52. Gasson, M.J. (1983) Genetic transfer systems in lactic acid bacteria. Antonie van Leeuwenhoek 49, 275–282.PubMedGoogle Scholar
  53. Gasson, M.J. and Davies, F.L. (1984) The genetics of dairy lactic acid bacteria. In Advances in the Microbiology and Biochemistry of Cheese and Fermented Milk (Davies, F.L. and Law, B.A., eds.). Elsevier Applied Science Publishers, New York, pp 99–126.Google Scholar
  54. Gautier, M. and Chopin, M-C. (1987) Plasmid-determined restriction/modification systems and abortive infection in Streptococcus cremoris. Appl. Environ. Microbiol. 53, 923–927.Google Scholar
  55. Gonzalez, C.F. and Kunka, B.S. (1985) Transfer of sucrose-fermenting ability and nisin production phenotype among lactic streptococci. Appl. Environ. Microbiol. 49, 627–633.PubMedGoogle Scholar
  56. Harrington, A. and Hill, C. (1991) Construction of a bacteriophage-resistant derivative of Lactococcus lactis subsp. lactis 425A by using the conjugal plasmid pNP40. Appl. Environ. Microbiol. 57, 3405–3409.PubMedGoogle Scholar
  57. Heap, H.A. and Jarvis, A.W. (1980) A comparison of prolate and isometric-headed lactic streptococcal bacteriophages. N.Z.J. Dairy Sci. Technol. 15, 75–81.Google Scholar
  58. Heap, H.A. and Lawrence, R.C. (1988) Culture systems for the dairy industry. In Developments in Food Microbiology (Robinson, ed.). Vol. 4. Elsevier Applied Science, Amsterdam, pp. 149–185.Google Scholar
  59. Heap, H.A. and Jarvis, A.W. (1980) A comparison of prolate- and isometric-headed lactic streptococcal bacteriophages. N.ZJ. Dairy Sci. Technol. 15, 75–81.Google Scholar
  60. Higgins, D.L., Sanozky-Dawes, R.B. and Klaenhammer, T.R. (1988) Restriction and modification activities from Streptococcus lactis ME2 are encoded by a self-transmissible plasmid, pTN20, that forms cointegrates during mobilization of lactose-fermenting ability. J. Bacteriol. 170, 3435–3442.PubMedGoogle Scholar
  61. Hill, C., Pierce, K. and Klaenhammer, T.R. (1989a) The conjugative plasmid pTR2030 encodes two bacteriophage defense mechanisms in lactococci, restriction modification (R+/M+) and abortive infection (Hsp+). Appl. Environ. Microbiol. 55, 2416–2419.PubMedGoogle Scholar
  62. Hill, C., Romero, D.A., McKenney, D.S., Finer, K.R. and Klaenhammer, T.R. (1989b) Localization, cloning and expression of genetic determinants for bacteriophage resistance (Hsp) from the conjugative plasmid pTR2030. Appl. Environ. Microbiol. 55, 1684–1689.PubMedGoogle Scholar
  63. Hill, C., Miller, L.A., and Klaenhammer, T.R. (1990a) Nucleotide sequence and distribution of the pTR2030 resistance determinant (hsp) which aborts bacteriophage infection in lactococci. Appl. Environ. Microbiol. 56, 2255–2258.PubMedGoogle Scholar
  64. Hill, C., Miller, L.A. and Klaenhammer, T.R. (1990b) Cloning, expression, and sequence determination of a bacteriophage fragment encoding bacteriophage resistance in Lactococcus lactis. J. Bacteriol. 172, 6419–6426.PubMedGoogle Scholar
  65. Hill, C., Massey, I.J. and Klaenhammer, T.R. (1991a) Rapid method to characterize lactococcal bacteriophage genomes. Appl. Environ. Microbiol. 57, 283–288.PubMedGoogle Scholar
  66. Hill, C., Miller, L.A. and Klaenhammer, T.R. (1991b) The bacteriophage resistance plasmid forms high-molecular weight multimers in lactococci. Plasmid 25, 105–112.PubMedGoogle Scholar
  67. Hill, C., Miller, L.A. and Klaenhammer, T.R. (1991c) In vivo genetic exchange of a functional domain from a type II A methylase between lactococcal plasmid pTR2030 and a virulent bacteriophage. J. Bacteriol. 173, 4363–4370.PubMedGoogle Scholar
  68. Huggins, A.R. and Sandine, W.E. (1979) Selection and characterization of phage insensitive lactic streptococci. J. Dairy Sci. 62, 70-71.Google Scholar
  69. Hull, R.R. (1983) Factory-derived starter cultures for the control of bacteriophage in cheese manufacture. Aust. J. Dairy Technol. 38, 149–153.Google Scholar
  70. Ishibashi, K., Takesue, S., Watanabe, K and Oishi, K. (1982) Use of lectins to characterise the receptor sites for bacteriophage PL—1 of Lactobacillus casei. J. Gen. Microbiol. 128, 2251–2259.Google Scholar
  71. Jarvis, A.W. (1977) The serological differentiation of lactic streptococcal bacteriophage. N.Z.J. Dairy Sci. Technol. 12, 176–181.Google Scholar
  72. Jarvis, A.W. (1981) The use of whey-derived phage-resistant starter strains in New Zealand cheese plants. N.Z.J. Dairy Sci. Technol. 16, 25–31.Google Scholar
  73. Jarvis, A.W. (1984a) Differentiation of lactic streptococcal phages into phage species by DNA-DNA homology. Appl. Environ. Microbiol. 47, 343–349.PubMedGoogle Scholar
  74. Jarvis, A.W. (1984b) DNA-DNA homology between lactic streptococci and their temperate and lytic phages. Appl. Environ. Microbiol. 47, 1031–1038.PubMedGoogle Scholar
  75. Jarvis, A.W. (1988) Conjugal transfer in lactic streptococci of plasmid-encoded insensitivity to prolate- and small isometric-headed bacteriophages. Appl. Environ. Microbiol. 54, 777–783.PubMedGoogle Scholar
  76. Jarvis, A.W. (1989) Bacteriophages of lactic acid bacteria. J. Dairy Sci. 72, 3406–3428.Google Scholar
  77. Jarvis, A.W. and Klaenhammer, T.R. (1986) Bacteriophage resistance conferred on lactic streptococci by the conjugative plasmid pTR2030: effects on small isometric-, large isometric-, and prolate-headed phages. Appl. Environ. Microbiol. 1272–1277.Google Scholar
  78. Jarvis, A.W. and Meyer, J. (1986) Electron microscopic heteroduplex study and restriction endonuclease cleavage analysis of the DNA genomes of three lactic streptococcal bacteriophages. Appl. Environ. Microbiol. 51, 566–571.PubMedGoogle Scholar
  79. Jarvis, A.W., Fitzgerald, CF., Mata, M., Mercenier, A., Neve, H., Powell, I.B., Ronda, C, Saxelin, M. and Teuber, M. (1991) Species and type phages of lactococcal bacteriophages. Intervirology 32, 2–9.PubMedGoogle Scholar
  80. Jarvis, A.W., Heap, H.A. and Limsowtin, G.K.Y. (1989) Resistance against industrial bacteriophages conferred on lactococci by plasmid pAJ1106 and related plasmids. Appl. Environ. Microbiol. 55, 1537–1543.PubMedGoogle Scholar
  81. Jimeno, J., Casey, M.G., Jenni, E. and Accolas, J.-P. (1990) A new type of bacteriophage of Lactobacillus delbrueckii. FEMS Microbiol. Rev. 87, 58 (Abstract).Google Scholar
  82. Josephsen, J.J. and Klaenhammer, T.R. (1990) Stacking of three different restriction and modification systems in Lactococcus lactis by cotransformation. Plasmid 23, 71–75.PubMedGoogle Scholar
  83. Josephsen, J.J. and Vogensen, F.K. (1989) Identification of three different plasmid-encoded restriction/modification systems in Streptococcus lactis subsp. cremoris W56. FEMS Microbiol. Lett. 59, 161–166.Google Scholar
  84. Kelly, W., Dobson, J., Jorck-Ramberg, D., Fitzgerald, G. and Daly, C. (1990) Introduction of bacteriophage resistance plasmids into commercial Lactococcus starter strains. FEMS Microbiol. Rev. 87, P63 (Abstract).Google Scholar
  85. Keogh, B.P. (1973) Adsorption, latent period and burst size of phages of some strains of lactic streptococci. J. Dairy Res. 40, 303–309.Google Scholar
  86. Keogh, B.P. (1980) Appraisal of media and methods for assay of bacteriophages of lactic streptococci. Appl. Environ. Microbiol. 40, 798–802.PubMedGoogle Scholar
  87. Keogh, B.P. and Pettingiii, G. (1983) Adsorption of bacteriophage lb7 on Streptococcus cremoris EB7. Appl. Environ. Microbiol 45, 1946–1948.PubMedGoogle Scholar
  88. Keogh, B.P. and Shimmin, P.D. (1974) Morphology of the bacteriophages of lactic streptococci. Appl. Microbiology 27, 411–415.Google Scholar
  89. Khosaka, T. (1977) Physicochemical properties of virulent Lactobacillus phage containing DNA with cohesive ends. J. Gen. Virol. 37, 209–214.Google Scholar
  90. Kim, S.G. and Batt, CA. (1991a) Molecular characterization of a Lactococcus lactis bacteriophage F4–1. Food Microbiol. 8, 15–26.Google Scholar
  91. Kim, S.G. and Batt, C.A. (1991b) Nucleotide sequence and deletion analysis of a gene coding for a structural protein of Lactococcus lactis bacteriophage F4–1. Food Microbiol. 8, 27–36.Google Scholar
  92. Kim, S.G. and Batt, C.A. (1991c) Identification of a nucleotide sequence conserved in Lactococcus lactis bacteriophages. Gene 98, 95–100.PubMedGoogle Scholar
  93. Kim, S.G. and Batt, C. (1991d) Antisense mRNA-mediated bacteriophage resistance in Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 57, 1109–1113.PubMedGoogle Scholar
  94. King, W.R., Collins, E.B. and Barrett, E.L. (1983) Frequencies of bacteriophage resistant and slow acid-producing variants of Streptococcus cremoris. Appl. Environ. Microbiol. 45, 1481–1485.PubMedGoogle Scholar
  95. Kita, K., Kotani, H., Sugisake, H. and Takanami, M. (1989) The Fokl restriction-modification system. I. Organization and nucleotide sequences of the restriction and modification genes. J. Bio. Chem. 264, 5751–5756.Google Scholar
  96. Klaenhammer, T.R. (1984) Interactions of bacteriophages with lactic streptococci. Adv. Appl. Microbiol. 30, 1–29.Google Scholar
  97. Klaenhammer, T.R. (1987) Plasmid-directed mechanisms for bacteriophage defense in lactic streptococci. FEMS Microbiol. Rev. 46, 313–325.Google Scholar
  98. Klaenhammer, T.R. (1989) Genetic characterization of multiple mechanisms of phage defense from a prototype phage-insensitive strain, Lactococcus lactis ME2. J. Dairy Sci. 72, 3429–3442.Google Scholar
  99. Klaenhammer, T.R. (1991) Development of bacteriophage-resistant strains of lactic acid bacteria. Biochemical Soc. Transactions 19, 675–681.Google Scholar
  100. Klaenhammer, T.R. and Sanozky, R.B. (1985) Conjugal transfer from Streptococcus lactis ME2 of plasmids encoding phage resistance, nisin resistance and lactose-fermenting ability: evidence for a high-frequency conjugative plasmid responsible for abortive infection of virulent bacteriophage. J. Gen. Microbiol. 131, 1531–1541.PubMedGoogle Scholar
  101. Klaenhammer, T.R. and Sing, W.D. (1991) A novel rotation strategy using different phage defenses in a single-strain starter culture system. J. Dairy Sci. 74, 120 (Abstract).Google Scholar
  102. Kruger, D.H., and Bickle, T.A. (1983) Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts. Microbiol. Rev. 47, 345–360.PubMedGoogle Scholar
  103. Krusch, U. Neve, H., Luschei, B. and Teuber, M. (1987) Characterization of virulent phages of Streptococcus salivarius subsp. thermophilus by host specificity and electron microscopy. Kieler Milchwirtschaftl. Forschungsberichte 39, 155–167.Google Scholar
  104. Lahbib-Mansais, Y., Mata, M. and Ritzenthaler, P. (1988) Molecular taxonomy of Lactobacillus phages. Biochimie 70, 429–435.PubMedGoogle Scholar
  105. Laible, N.J., Rule, P.L., Harlander, S.K., and McKay, L.L. (1987) Identification and cloning of plasmid deoxyribonucleic acid coding for abortive phage infection from Streptococcus lactis ssp. diacetylactis KR2. J. Dairy Sci. 70, 2211–2219.Google Scholar
  106. Lakshmidevi, G. (1988) Molecular biology of temperate streptococcal phages. PhD Thesis, University of Melbourne, Melbourne, Australia.Google Scholar
  107. Lakshmidevi, G., Davidson, B.E., and Hillier, A.J. (1988) Circular permutation of the genome of a temperate bacteriophage from Streptococcus cremoris BK5. Appl. Environ. Microbiol. 54, 1039–1045.PubMedGoogle Scholar
  108. Lakshmidevi, G., Davidson, B.E. and Hillier, A.J. (1990) Molecular characterization of promoters of the Lactococcus lactis subsp. cremoris temperate bacteriophage BK5-T and identification of a phage gene implicated in the regulation of promoter activity. Appl. Environ. Microbiol. 56, 934–942.PubMedGoogle Scholar
  109. Langella, P., and Chopin, A. (1989) Effect of restriction-modification systems on transfer of foreign DNA into Lactococcus lactis subsp. lactis. FEMS Microbiol. Lett. 59, 301–306.Google Scholar
  110. Lauster, R. (1989) Evolution of type II DNA methyltransferases. A gene duplication model. J. Mol. Biol. 206, 313–321.PubMedGoogle Scholar
  111. Lautier, M. and Novel, G. (1987) DNA-DNA hybridization in lactic streptococcal temperate and virulent phages, belonging to distinct lytic groups. J. Ind. Microbiol. 2, 151–158.Google Scholar
  112. Lembke, J. and Teuber, M. (1981) Serotyping of morphologically identical bacteriophages of lactic streptococci by immunoelectronmicroscopy. Milchwissenschaft 36, 10–12.Google Scholar
  113. Lembke, J., Krusch, U., Lompe, A. and Teuber, M. (1980) Isolation and ultrastructure of bacteriophages of group N (lactic) streptococci. Zbl. Bakt., I. abt. Orig. C. 1, 79–91.Google Scholar
  114. Lillehaug, D., Lindqvist, B.H. and Birkeland, N.K. (1991) Characterization of ϕLC3, a Lactococcus lactis subsp. cremoris temperate bacteriophage with cohesive single-stranded DNA ends. Appl. Environ. Microbiol. 57, 3206–3211.PubMedGoogle Scholar
  115. Limsowtin, G.K.Y, and Terzaghi, B.E. (1976) Phage resistant mutants: their selection and use in cheese factories. N.Z.J. Dairy Sci. Technol. 11, 251–256.Google Scholar
  116. Limsowtin, G.K.Y, and Terzaghi, B.E. (1977) Characterization of bacterial isolates from a phage carrying culture of Streptococcus cremoris. N.Z.J. Dairy Sci. Technol. 12, 22–28.Google Scholar
  117. Limsowtin, G.K.Y., Heap, H.A. and Lawrence, R.C. (1978) Heterogeneity among strains of lactic streptococci. N.Z.J. Dairy Sci. Technol. 13, 1–8.Google Scholar
  118. Marshall, R.J. and Berridge, N.J. (1976) Selection and some properties of phage-resistant starters for cheese making. J. Dairy Res. 43, 449–158.Google Scholar
  119. Mata, M. and Titzenthaler, P. (1988) Present state of lactic acid bacteria phage taxonomy. Biochimie 70, 395–399.PubMedGoogle Scholar
  120. Mata, M., Trautwetter, A., Luthard, G. and Ritzenthaler, P. (1986) Thirteen virulent and temperate bacteriophages of Lactobacillus bulgaricus and Lactobacillus lactis belong to a single DNA homology group. Appl. Environ. Microbiol. 52, 812–818.PubMedGoogle Scholar
  121. Mayo, B., Hardisson, C. and Brana, A.F. (1991) Nucleolytic activities in Lactococcus lactis subsp. lactis NCDO 497. FEMS Microbiol. Lett. 79, 195–198.Google Scholar
  122. McKay, L.L. (1982) Regulation of lactose metabolism in dairy streptococci. In Developments in Food Microbiology, (Davies, R., ed.), Appl. Science Publishers, London, pp. 153–182.Google Scholar
  123. McKay, L.L. (1983) Functional properties of plasmids in lactic streptococci. Antonie van Leeuwenhoek 49, 259–274.PubMedGoogle Scholar
  124. McKay, L.L. and Baldwin, K.A. (1974) Simultaneous loss of proteinase and lactose-utilizing enzyme activities in Streptococcus lactis and reversal of loss by transduction. Appl. Environ. Microbiol. 28, 342–346.Google Scholar
  125. McKay, L.L. and Baldwin, K.A. (1984) Conjugative 40-megadalton plasmid in Streptococci lactis subsp. diacetylactis DRC3 is associated with resistance to nisin and bacteriophage. Appl. Environ. Microbiol. 47, 68–74.PubMedGoogle Scholar
  126. McKay, L.L., Bohanon, M.J., Polzin, K.M., Rule, P.L. and Baldwin, K.A. (1989) Localization of separate genetic loci for reduced sensitivity towards small isometric-headed bacteriophage sk 1 and prolate-headed bacteriophage c2 on pGBK17 from Lactococcus lactis subsp. lactis KR2. Appl. Environ. Microbiol. 55, 2702–2709.PubMedGoogle Scholar
  127. Mercenier, A. and Lemoine, Y. (1989) Genetics of Streptococcus thermophilus: A Review. J. Dairy Sci. 72, 3444–3454.Google Scholar
  128. Mercenier, A., Robert, C., Romero, D.A., Slos, P. and Lemoine, Y. (1987) Transfection of Streptococcus thermophilus spheroplasts. In Streptococcal Genetics, (J.J. Ferretti and R. Curtiss III, eds) American Society for Microbiology, Washington, DC, USA, pp. 234–237Google Scholar
  129. Moineau, S., Durmaz, E.D., Pandian, S. and Klaenhammer, T.R. (1992a) Use of monoclonal antibodies to investigate mechanisms of phage abortion in Lactococcus lactis. J. Dairy Sci. 75, 113 (abstract).Google Scholar
  130. Moineau, S., Fortier, J., Ackermann, H.W. and Pandian, S. (1992b) Characterization of lactococcal bacteriophages from Quebec cheese plants. Can. J. Microbiol. 38, 875–882.Google Scholar
  131. Mullan, W.M.A., Daly, C. and Fox, P. (1981) Effect of cheese making temperatures on the interactions of lactic streptococci and their phages. J. Dairy Res. 48, 465–471.Google Scholar
  132. Mullan, W.M.A. and Crawford, R.J.M. (1985) Partial purification and some properties of ϕpc2 (w) lysin, a lytic enzyme produced by phage-infected cells of Streptococcus lactis C2. J. Dairy Res. 52, 123–138.PubMedGoogle Scholar
  133. Murphy, M.C., Steele, J.L., Daly, C. and McKay, L.L. (1988) Concomitant conjugal transfer of reduced-bacteriophage-sensitivity mechanisms with lactose-and sucrose-fermenting ability in lactic streptococci. Appl. Environ. Microbiol. 54, 1951–1956.PubMedGoogle Scholar
  134. Nes, I.F., Brendehaug, J. and von Husby, K.O. (1988) Characterization of the bacteriophage B2 of Lactobacillus plantarum ATCC 8014. Biochimie 70, 423–427.PubMedGoogle Scholar
  135. Neve, H., Lilischkis, R. and Teuber, M. (1988) Characterization of a virulent bacteriophage of Leuconostoc mesenteroides subsp. cremoris. Kieler Milchwirtschaftliche Forschungsberichte 40, 205–212.Google Scholar
  136. Neve, H., Krusch, U. and Teuber, M. (1989) Classification of virulent bacteriophages of Streptococcus salivarius subsp. thermophilus isolated from yoghurt and Swiss-type cheese. Appl. Microbiol. Biotechnol. 30, 624–629.Google Scholar
  137. Neve, H., Krusch, U. and Teuber, M. (1990) Virulent and temperate bacteriophages of thermophilic lactic acid streptococci. FEMS Microbiol. Rev. 87, 58.Google Scholar
  138. Neve, H. and Teuber, M. (1991) Basic microbiology and molecular biology of bacteriophages of lactic acid bacteria in dairies. Bulletin of the International Dairy Federation No. 263, pp. 3–15.Google Scholar
  139. Ogata, S. (1980) Bacteriophage contamination in industrial processes. Biotechnol. Bioengineering 22, 177–193.Google Scholar
  140. Oram, J.D. (1971) Isolation and properties of a phage receptor substance from the plasma membrane of Streptococcus lactis ML3. J. Gen. Virol. 13, 59–71.PubMedGoogle Scholar
  141. Oram, J.D. and Reiter, B. (1965) Phage-associated lysins affecting group n and group D streptococci. J. Gen. Microbiol. 40, 57–63.PubMedGoogle Scholar
  142. Parada, J.L., La Via, M.I. and Solari, A. (1984) Isolation of Streptococcus lactis bacteriophages and their interaction with the host cell. Appl. Environ. Microbiol. 47, 1352–1354.PubMedGoogle Scholar
  143. Pearce, L.E. (1978) The effect of host-controlled modification on the replication rate of a lactic streptococcal bacteriophage. N.Z.J. Dairy Sci. Technol. 13, 166–171.Google Scholar
  144. Platteeuw, C. and de Vos, W.M. (1992) Location, characterization and expression of lytic enzyme-encoding gene, lytA, of Lactococcus lactis bacteriophage phi US3. Gene. 118, 115–120.PubMedGoogle Scholar
  145. Polzin, K.M., and McKay, L.L. (1991) Identification, DNA sequence, and distribution of IS981, a new high-copy-number insertion sequence in lactococci. Appl. Environ. Microbiol. 57, 734–743.PubMedGoogle Scholar
  146. Polzin, K.M. and Shimizu-Kadota, M. (1987) Identification of a new insertion element, similar to Gram-negative IS26, on the lactose plasmid of Streptococcus lactis ML3. J. Bacteriol. 169, 5481–5488.PubMedGoogle Scholar
  147. Powell, I.B. and Davidson, B.E. (1985) Characterization of streptococcal bacteriophage c6A. J. Gen. Microbiol. 66, 2737–2741.Google Scholar
  148. Powell, I.B. and Davidson, B.E. (1986) Resistance to in vitro restriction of DNA from lactic streptococcal bacteriophages c6A. Appl. Environ. Microbiol. 51, 1358–1360.PubMedGoogle Scholar
  149. Powell, LB., Ward, A.C., Hillier, A.J. and Davidson, B.E. (1990) Simultaneous conjugal transfer in Lactococcus to genes involved in bacteriocin production and reduced susceptibility to bacteriophages. FEMS Microbiol. Letts. 72, 209–214.Google Scholar
  150. Powell, I.B., Tullock, D.L., Hillier, A.J. and Davidson, B.E. (1992) Phage DNA synthesis and host DNA degradation in the life cycle of Lactococcus lactis bacteriophage c6A. J. Gen. Microbiol. 138, 945–950.PubMedGoogle Scholar
  151. Ptashne, M. (1986) A Genetic Switch: Gene Control and Phage Lambda, Blackwell Scientific Publications, Palo Alto, CA, U.S.A.Google Scholar
  152. Prevots, F., Mata, M. and Ritzenthaler, P. (1990) Taxonomic differentiation of 101 lactococcal bacteriophages and characterization of bacteriophages with unusually large genomes. Appl. Environ. Microbiol. 56, 2180–2185.PubMedGoogle Scholar
  153. Raya, R.R., Kleeman, E.G., Luchansky, J.B. and Klaenhammer, T.R. (1989) Characterization of the temperate bacteriophage ϕadh and plasmid transduction in Lactobacillus acidophilus ADH. Appl. Environ. Microbiol. 55, 2206–2213.PubMedGoogle Scholar
  154. Raya, R.R., De Antoni, G.L., Walker, D.C. and Klaenhammer, T.R. (1991) Construction of a phage ϕadh-mediated site-specific insertional vector, and chromosomal integration in Lactobacillus gasseri ADH. J. Dairy Sci. 74, 122 (abstract).Google Scholar
  155. Raya, R.R., Fremaux, C.F., De Antoni, G.L. and Klaenhammer, T.R, (1992) Site-specific integration of the temperate bacteriophage ϕadh into the Lactobacillus gasseri chromosome and molecular characterization of the phage (attP) and bacterial (attB) attachment sites. J Bacteriol. 174, 5584–5592.PubMedGoogle Scholar
  156. Raya, R.R. and Klaenhammer, T.R. (1992) High frequency transduction by Lactobacillus gasseri bacteriophage ϕadh. Appl. Environ. Microbiol. 58, 187–193.PubMedGoogle Scholar
  157. Reinbold, G.W., Reddy, M.S. and Hammond, E.G. (1982) Ultrastructure of bacteriophages active against Streptococcus thermophilus, Lactobacillus bulgaricus, Lactobacillus lactis and Lactobacillus helveticus. J. Food Prot. 45, 119–124.Google Scholar
  158. Reiter, B. (1949) Lysogenic strains of lactic streptococci. Nature 164, 667–668.PubMedGoogle Scholar
  159. Relano, P., Mata, M., Bonneau, M. and Ritzenthaler, P. (1987) Molecular characterization and comparison of 38 virulent and temperate bacteriophages of Streptococcus lactis. J. Gen. Microbiol. 133, 3053–3063.PubMedGoogle Scholar
  160. Reyes-Gavilan, C.G., Limsowtin, G.K.Y., Sechaud, L., Veaux, M. and Accolas, J.P. (1990) Evidence for a plasmid-linked restriction-modification system in Lactobacillus helveticus. Appl. Environ. Microbiol. 56, 3412–3419.Google Scholar
  161. Reyrolle, J., Chopin, M.C., Letellier, F. and Novel, G. (1982) Lysogenic strains of lactic acid streptococci and lytic spectra of their temperate bacteriophages. Appl. Environ. Microbiol. 43, 349–356.PubMedGoogle Scholar
  162. Romero, D.A. and Klaenhammer, T.R. (1990a) Abortive phage infection and restriction/modification activities directed by pTR2030-determinants are enhanced by recombination with conjugal elements in lactococci. J. Gen. Microbiol. 136, 1817–1824.Google Scholar
  163. Romero, D.A. and Klaenhammer, T.R. (1990b) Characterization of Gram-positive insertion sequence IS946, an iso-ISS1 element, isolated from the conjugative lactococcal plasmid pTR2030. J. Bacteriol. 172, 4151–4160.PubMedGoogle Scholar
  164. Sanders, M.E. (1987) Bacteriophages of industrial importance. In Phage Ecology, Goyal, S.M., Gerba, C.P., and Bitton, G. (eds), Wiley Interscience, John Wiley and Sons, NY, pp 211–244.Google Scholar
  165. Sanders, M.E. (1988) Phage resistance in lactic acid bacteria. Biochimie 70, 411–421.PubMedGoogle Scholar
  166. Sanders, M.E. and Klaenhammer, T.R. (1980) Restriction and modification in group N streptococci: effect of heat on development of modified lytic bacteriophage. Appl. Environ. Microbiol. 40, 500–506.PubMedGoogle Scholar
  167. Sanders, M.E. and Klaenhammer, T.R. (1981) Evidence for plasmid linkage of restriction and modification in Streptococcus cremoris KH. Appl. Environ. Microbiol. 42, 944–950.PubMedGoogle Scholar
  168. Sanders, M.E. and Klaenhammer, T.R. (1983) Characterization of phage-insensitive mutants from a phage-sensitive strain of Streptococcus lactis: evidence for a plasmid determinant that prevents phage adsorption. Appl. Environ. Microbiol, 46, 1125–1133.PubMedGoogle Scholar
  169. Sanders, M.E. and Klaenhammer, T.R. (1984) Phage resistance in a phage-insensitive strain of Streptococcus lactis: temperature-dependent phage development and host-controlled phage replication. Appl. Environ. Microbiol. 47, 979–985.PubMedGoogle Scholar
  170. Sanders, M.E., Leonhard, P.J., Sing, W.E. and Klaenhammer, T.R. (1986) Conjugal strategy for construction of fast acid-producing, bacteriophage-resistant lactic streptococci for use in dairy fermentations. Appl. Environ. Microbiol. 52, 1001–1007.PubMedGoogle Scholar
  171. Sanders, M.E. and Schultz, J. (1990) Cloning of phage resistance genes from Lactococcus lactis ssp. cremoris KH. J Dairy Sci. 73, 2044–2053.Google Scholar
  172. Sandine, W.E. (1989) Use of bacteriophage-resistant mutants of lactococcal starters in cheese-making. Neth. Milk Dairy J. 43, 211–219.Google Scholar
  173. Saxelin, M.-L., Nurmiaho-Lassila, E.-L., Merilainen, V.T. and Forse, R.I. (1986) Ultrastructure and host specificity of bacteriophages of Streptococcus cremoris, Streptococcus lactis subsp. diacety lactis, and Leuconostoc cremoris from Finnish fermented milk viiii. Appl. Environ. Microbiol. 52, 771–777.PubMedGoogle Scholar
  174. Schafer, A., Geis, A., Neve, H. and Teuber, M. (1991) Bacteriophage receptors of Lactococcus lactis subsp. diacetylactis F7/2 and Lactococcus lactis subsp. cremoris Wg2-1. FEMS Microbiol. Lett. 78, 69–74.Google Scholar
  175. Sechaud, L., Cluzel, P.-J., Rousseau, M., Baumgartner, A. and Accolas, J.-P. (1988) Bacteriophages of Lactobacilli. Biochimie 70, 401–410.PubMedGoogle Scholar
  176. Sechaud, L., Callegari, M.-L., Rousseau, M., Muller, M.-C. and Accolas, J.-P. (1989) Relationship between temperate bacteriophage 0241 and virulent bacteriophage 832-B1 of Lactobacillus helveticus Neth. Milk Dairy J. 43, 261–277.Google Scholar
  177. Sechaud, L., Rousseau, M., Limsowtin, G.K.Y., Fayard, B., Callegari, M.-C, Quesnee, P. and Accolas, J.-P. (1992) Comparative study of 35 bacteriophages of Lactobacillus helveticus: morphology and host range. Appl. Environ. Microbiol. 58, 1011–1018.PubMedGoogle Scholar
  178. Sharp, P.M. (1986) Molecular evolution of bacteriophages: evidence of selection against the recognition sites of host restriction enzymes. Mol. Biol. Evol. 3, 75–83.PubMedGoogle Scholar
  179. Shearman, C., Underwood, H., Jury, K. and Gasson, M. (1989) Cloning and DNA sequence analysis of a Lactococcus bacteriophage lysin gene. Mol. Gen. Genet. 218, 214–221.PubMedGoogle Scholar
  180. Shearman, C.A., Hertwig S., Teuber, M., and Gasson, M.J. (1991) Characterization of the prolate-headed lactococcal bacteriophage ϕML3: location of the lysin gene and its DNA homology with other prolate-headed phages. J. Gen. Microbiol. 137, 1285–1291.Google Scholar
  181. Shearman, C.A., Jury, K. and Gasson, M.J. (1992) Autolytic Lactococcus lactis expressing a lactococcal bacteriophage lysin gene. Biotechnology. 10, 196–199.Google Scholar
  182. Shimizu-Kadota, M. and Sakurai, T. (1982) Prophage curing in Lactobacillus casei by isolation of a thermoinducible mutant. Appl. Environ. Microbiol. 43, 1284–1287.PubMedGoogle Scholar
  183. Shimizu-Kadota, M., Sakurai, T. and Tsuchida, N. (1983) Prophage origin of a virulent phage appearing on fermentations of Lactobacillus casei S-1. Appl. Environ. Microbiol. 45, 669–674.PubMedGoogle Scholar
  184. Shimizu-Kadota, M. and Tsuchida, N. (1984) Physical mapping of the virion and the prophage DNAs of a temperate Lactobacillus phage ϕFSW. J. Gen. Microbiol. 130, 423–430.PubMedGoogle Scholar
  185. Shimizu-Kadota, M., Kiwaki, M., Hirokawa, H. and Tsuchida, N. (1985) ISLI: a new transposable element in Lactobacillus casei. Mol. Gen. Genet. 200, 193–198.PubMedGoogle Scholar
  186. Sijtsma, L., Sterkenburg, A. and Wouters, J.T.M. (1988) Properties of the cell walls of Lactococcus lactis subsp. cremoris SK110 and SK112 and their relation to bacteriophage resistance. Appl. Environ. Microbiol. 54, 2808–2811.PubMedGoogle Scholar
  187. Sijtsma, L., Jansen, N., Hazeleger, W.C., Wouters, J.T.M. and Hellingwerf, K.J. (1990a) Cell surface characteristics of bacteriophage-resistant Lactococcus lactis subsp. cremoris SK110 and its bacteriophage sensitive variant SK112. Appl. Environ. Microbiol, 56, 3230–3233.PubMedGoogle Scholar
  188. Sijtsma, L., Wouters, J.T.M. and Hellingwerf, K.J. (1990b) Isolation and characterization of lipoteichoic acid, a cell envelope component involved in preventing phage adsorption from Lactococcus lactis subsp. cremoris SK110. J. Bacteriol. 172, 7126–7130.PubMedGoogle Scholar
  189. Sijtsma, L., Hellingwerf, K.J. and Wouters, J.T.M. (1991) Composition and phage binding capacity of cell walls isolated from Lactococcus lactis subsp. cremoris SK110 and SK112. Neth. Milk Dairy J. 45, 81–95.Google Scholar
  190. Simon, D., Rouault, A. and Chopin, M-C. (1985) Protoplast transformation of group N streptococci with cryptic plasmids. FEMS Microbiol. Lett. 26, 239–241.Google Scholar
  191. Sing, W.D. and Klaenhammer, T.R. (1986) Conjugal transfer of bacteriophage resistance determinants on pTR2030 into Streptococcus cremoris strains. Appl. Environ. Microbiol. 51, 1264–1271.PubMedGoogle Scholar
  192. Sing, W.D. and Klaenhammer, T.R. (1990a) Characteristics of phage abortion conferred in lactococci by the conjugal plasmid pTR2030. J. Gen. Microbiol. 136, 1807–1815.Google Scholar
  193. Sing, W.D. and Klaenhammer, T.R. (1990b) Plasmid-induced abortive infection in lactococci: a review. J. Dairy Sci. 73, 2239–2251.Google Scholar
  194. Sing, W.D. and Klaenhammer, T.R. (1991) Characterization of restriction and modification plasmids from Lactococcus lactis ssp. cremoris and their effects when combined with pTR2030. J. Dairy Sci. 74, 1133–1144.Google Scholar
  195. Solaiman, D.K.Y, and Somkuti, G.A. (1991) A type II restriction endonuclease of Streptococcus thermophilus ST117. FEMS Microbiol. Lett 80, 75–80.Google Scholar
  196. Sozzi, T., Poulin, J.M., Maret, R. and Pousaz, R. (1978) Isolation of a bacteriophage of Leuconostoc mesenteroides from dairy products. J Appl. Bacteriol. 44, 159–161.Google Scholar
  197. Stadhouders, J. and Leenders, G.J.M. (1984) Spontaneously developed mixed-strain cheese starters. Their behaviour towards phages and their use in the Dutch cheese industry. Neth. Milk Dairy J. 38, 157–181.Google Scholar
  198. Steele, J.L., and McKay, L.L. (1989) Conjugal transfer of genetic material by L. lactis subsp. lactis 11007. Plasmid 22, 32–43.PubMedGoogle Scholar
  199. Steele, J.L., Murphy, M.C., Daly, C. and McKay, L.L. (1989) DNA-DNA homology among lactose- and sucrose-fermenting transconjugants from Lactococcus lactis strains exhibiting reduced bacteriophage sensitivity. Appl. Environ. Microbiol. 55, 240–243.Google Scholar
  200. Steenson, L.R. and Klaenhammer, T.R. (1985) Streptococcus cremoris M12R transconjugants carrying the conjugal plasmid pTR2030 are insensitive to attack by lytic bacteriophages. Appl. Environ. Microbiol. 50, 851–858.PubMedGoogle Scholar
  201. Steenson, L.R. and Klaenhammer, T.R. (1986) Plasmid heterogeneity in Streptococci cremoris M12R: effects on proteolytic activity and host-dependent phage replication. J. Dairy Sci. 69, 2227–2236.PubMedGoogle Scholar
  202. Sterkenburg, A., van Leeuwen, P. and Wouters, J. (1988) Loss of phage resistance encoded by plasmid pSK112 in chemostat cultures of Lactococcus lactis ssp. cremoris SK110. Biochimie 70, 451–456.PubMedGoogle Scholar
  203. Stetter, K.O., Priess, H. and Delius, H. (1978) Lactobacillus casei phage PL-1: molecular properties and first transcription studies in vivo and in vitro. Virology 87, 1–12.PubMedGoogle Scholar
  204. Szybalski, W., Kim, S.C., Hasan, N., and Podhajska, A.J. (1991) Class-IIS restriction enzymes — a review. Gene 100, 13–26.PubMedGoogle Scholar
  205. Terzaghi, B.E. (1976) Morphologies and host sensitivities of lactic streptococcal phages from cheese factories. N.Z.J. Dairy Sci. Technol. 11, 155–163.Google Scholar
  206. Teuber, M. (1986) Final report of the achievements of the research programme on construction of phage resistant dairy starter cultures. In, Biomolecular Engineering in the European Community, E. Magnien (ed.) Martinus Nijhoff, Dordecht, The Netherlands, p. 539–547.Google Scholar
  207. Teuber, M. and Lembke, J. (1983) the bacteriophages of lactic acid bacteria with emphasis on genetic aspects of group N lactic streptococci. Antonie van Leeuwenhoek 49, 283–295.PubMedGoogle Scholar
  208. Teuber, M. and Loof, M. (1987) Genetic characterization of lactic streptococcal bacteriophages. In Streptococcal Genetics (Ferretti, J.J. and Curtiss, R., eds), 250–258. American Society for Microbiology, Washington D.C., U.S.A., pp. 250–258.Google Scholar
  209. Thunell, R.K., Sandine, W.E. and Bodyfelt, F.W. (1981) Phage insensitive, multiple-strain starter approach to Cheddar cheese making. J. Dairy Sci. 64, 2270–2277.Google Scholar
  210. Thunell, R.K., Sandine, W.E. and Bodyfelt, F.E. (1984) Defined strains and phage insensitive mutants for commercial manufacture of cottage cheese and cultured buttermilk. J. Dairy Sci. 67, 1175–1180.Google Scholar
  211. Tiiro, P. and Sarimo, S.S. (1987) Characterization of the genome of some Streptococcus thermophilus phages by restriction endonuclease mapping. FEMS Microbiol. Rev. 46, 39 (abstract).Google Scholar
  212. Timmons, P., Hurley, M., Drinan, F.D., Daly, C. and Cogan, T. (1988) Development and use of a defined strain starter system for Cheddar cheese. J. Soc. Dairy Technol. 41, 49–53.Google Scholar
  213. Tortorello, M.L., Chang, P.-K., Ledford, R.A. and Dunny, G.M. (1990) Plasmid associated antigens associated with resistance to phage adsorption in Lactococcus lactis. In Abstracts of 3rd International ASM Conference on Streptococcal Genetics, Miami Beach, FL. U.S.A. A/50.Google Scholar
  214. Trautwetter, A., Ritzenthaler, P., Alatossava, T. and Mata-Gilsinger, M. (1986) Physical and genetic characterization of the genome of Lactobacillus lactis bacteriophage LL-H. J. Virol. 59, 551–555.PubMedGoogle Scholar
  215. Valyasevi, R., Sandine, W.E. and Geller, B.L. (1990) The bacteriophage kh receptor of Lactococcus lactis subsp. cremoris KH is the rhamnose of the extracellular wall polysaccharide. Appl. Environ. Microbiol 56, 1882–1889.PubMedGoogle Scholar
  216. Valyasevi, R., Sandine, W.E. and geller, B.L. (1991) A membrane protein is required for bacteriophage c2 infection of Lactococcus lactis subsp. lactis C2. J. Bacteriol. 173, 6095–6100.PubMedGoogle Scholar
  217. van der Vossen, J.M.B.M., van der Lelie, D. and Venema, G. (1987) Isolation and characterization of Streptococcus cremoris Wg2 specific promoters. Appl. Environ. Microbiol. 53, 2452–2457.PubMedGoogle Scholar
  218. Vedamuthu, E.R. and Neville, J.M. (1986) Involvement of a plasmid in production of ropiness (mucoidness) in milk cultures by Streptococcus cremoris MS. Appl. Environ. Microbiol. 51, 677–682.PubMedGoogle Scholar
  219. Vedamuthu, E.R. and Neville, J.M. (1987) Phage resistance in Streptococcus lactis ssp. diacetylactis transconjugant SLA3.2501 and its derivatives. J. Dairy Sci. 70, 225–229.PubMedGoogle Scholar
  220. Vogensen, F.K. and Josephson, J. (1990) Comparison of R/M systems in Lactococcus lactis. FEMS Microbiol. Rev. 87, P61.Google Scholar
  221. Ward, A.C., Davidson, B.E., Hillier, A.J. and Powell, I.B. (1992) Conjugally-transferable phage resistance activities from Lactococcus lactis DRC1. J. Dairy Sci. 75, 683–691.Google Scholar
  222. Watanabe, K. and Takesue, S. (1972) The requirement for calcium in infection with Lactobacillus phages. J. Gen. Virol. 17, 19–30.PubMedGoogle Scholar
  223. Watanabe, K., Takesue, S. and Ishibashi, K. (1979) Adenosine triphosphage content in Lactobacillus casei and the blender-resistant phage-cell complex-forming ability of cells on infection with PL-1 phage. J. Gen. Virol. 42, 27–36.PubMedGoogle Scholar
  224. Watanabe, K., Takesue, S. and Ishibashi, K. (1980) DNA of phage PL-1 active against Lactobacillus casei ATCC 27092. Agric. Biol. Chem. 44, 453-455.Google Scholar
  225. Watanabe, K., Shirabe, M., Nakashima, Y. and Kakita, Y. (1991) The possible involvement of protein synthesis in the injection of PL-1 phage genome into its host, Lactobacillus casei. J. Gen. Microbiol. 137, 2601–2603.PubMedGoogle Scholar
  226. Wetzel, A., Neve, H., Gels, A. and Teuber, M. (1986) Transfer of plasmid-mediated phage resistance in lactic acid streptococci. Chem. Mikrobiol. Technol. Lebensm. 10, 86–89.Google Scholar
  227. Whitehead, H.R. and Cox, G.A. (1935) The occurrence of bacteriophage in cultures of lactic streptococci. N.Z.J. Dairy Sci. Technol. 16, 319–320.Google Scholar
  228. Yokokura, T. (1977) Phage receptor material in Lactobacillus casei. J. Gen. Microbiol. 100, 139–145.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • T. R. Klaenhammer
  • G. F. Fitzgerald

There are no affiliations available

Personalised recommendations