Skip to main content

Abstract

Food and dairy fermentations rely on the growth and acid producing ability of the lactic acid bacteria. Many of these have remained as traditional fermentations, where the process is driven by the natural microflora associated with the raw material. Increasing consistency, improved quality and processing efficiencies have followed the development of controlled fermentations. These rely on the activity of a starter culture which is intentionally inoculated in order to drive the primary fermentation. However, with the increased control granted through the repeated use of a defined starter culture comes the potential for disruption of the fermentation by bacteriophage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Accolas, J.-P. and Spillman, H. (1979) The morphology of six bacteriophages of Streptococcus thermophilus. J. Appl. Bacteriol. 47, 135–144.

    Google Scholar 

  • Ackermann, H.W. and DuBow, M.S. (1987) Viruses of Prokaryotes, CRC Press, Inc., Boca, Raton, FL., U.S.A.

    Google Scholar 

  • Alatossava, T., and Klaenhammer, T.R. (1991) Molecular characterization of three small isometricheaded bacteriophages which vary in their sensitivity to the lactococcal phage resistance plasmid pTR2030. Appl. Environ. Microbiol. 57, 1346–1353.

    PubMed  CAS  Google Scholar 

  • Alatossova, T., Forsman, P., Karvonen, P. and Vasala, A. (1987) Molecular biology of Lactobacillus lactis bacteriophage LL-H FEMS Microbiol. Rev. 46, 41 (Abstract).

    Google Scholar 

  • Anderson, D.G., and McKay, L.L. (1984) Genetic and physical characterization of recombinant plasmids associated with cell aggregation and high-frequency conjugal transfer in Streptococcus lactis ML3. J. Bacteriol. 158, 954–962.

    PubMed  CAS  Google Scholar 

  • Arendt, E.K., Lonvaud, A. and Hammes, W.P. (1991) Lysogeny in Leuconostoc oenos. J. Gen. Microbiol. 137, 2135–2139.

    PubMed  CAS  Google Scholar 

  • Baumgartner, A., Murphy, M., Daly, C. and Fitzgerald, G.F. (1986) Conjugative co-transfer of lactose and bacteriophage resistance plasmids from Streptococci cremoris UC653. FEMS Microbiol. Lett. 35, 233–237.

    CAS  Google Scholar 

  • Benbadis, L., Faelen, M, Castellino, I., Fazel, A., Mercenier, A. and Slos, P. (1987) Phages of Streptococcus thermophilus. F EMS Microbiol. Rev. 46, p.43. (Abstract)

    Google Scholar 

  • Benbadis, L., Faelen, M., Slos, P., Fazel, A., and Mercenier, A. (1990) Characterization and comparison of virulent bacteriophages of Streptococcus thermophilus isolated from yogurt. Biochimie 72, 855–862.

    PubMed  CAS  Google Scholar 

  • Benbadis, L., Garel, J.-R., and Hartley, D.L. (1991) Purification, properties, and sequence specificity of SslI a new type II restriction endonuclease from Streptococcus salivarius subsp. thermophilus. Appl. Environ. Microbiol. 57, 3677–3678.

    PubMed  CAS  Google Scholar 

  • Boizet, B., Lahbib-Mansais, Y., Dupont, L., Ritzenthaler, P. and Mata, M. (1990) Cloning, expression and nucleotide sequence of an endolysin gene of a Lactobacillus bulgaricus bacteriophage. FEMS Microbiol. Rev. 87, 60 (Abstract).

    Google Scholar 

  • Boizet, B., Mata, M., Mignot, O., Ritzenthaler, P. and Sozzi, T. (1992) Taxonomic characterization of Leuconostoc mesenteroides and Leuconostoc oenos bacteriophages. FEMS Microbiol. Lett. 90, 211–216..

    CAS  Google Scholar 

  • Boussemaer, J.P., Schrauwen, P.P., Sourrouille, J.L. and Guy, P. (1980) Multiple modification/restriction systems in lactic streptococci and their significance in defining a phagetyping system. J. Dairy Res. 47, 401–109.

    PubMed  CAS  Google Scholar 

  • Braun, V., Hertwig, S., Neve, H., Geis, A. and Teuber, M. (1989) Taxonomic differentiation of bacteriophages of Lactococcus lactis by electron microscopy, DNA-DNA hybridization, and protein profiles. J. Gen. Microbiol. 135, 2551–2560.

    CAS  Google Scholar 

  • Budde-Niekiel, A. and Teuber, M. (1987) Electron microscopy of the adsorption of bacteriophages to lactic acid streptococci. Milchwissenschaft 42, 551–554.

    Google Scholar 

  • Callegari, M.L., Sechaud, L., Rousseau, M., Bottazzi, V. and Accolas, J.-P. (1992) The S-layer protein of Lactobacillus helveticus CNRZ892 contains the receptor for virulent phage 832–B1. Appl. Environ. Microbiol. (In press).

    Google Scholar 

  • Carminati, D. and Giraffa, G. (1992) Evidence and characterization of temperate bacteriophage in Streptococcus salivarius subsp. thermophilus St 18. J. Gen. Microbiol. 59, 71–79.

    CAS  Google Scholar 

  • Casey, C.N. (1991) Molecular and physical characterization of lysogenic and lytic lactococcal bacteriophages. PhD Thesis, National University of Ireland.

    Google Scholar 

  • Chopin, M-C., and Chopin, A. (1990) Improvement of phage resistance in lactic acid bacteria. Proceedings of the Sixth International Symposium on the Genetics of Industrial Microorganisms, Vol I, 467–476.

    Google Scholar 

  • Chopin, A., Chopin, M-C, Moillo-Batt, A. and Langella, P. (1984) Two plasmid-determined restriction and modification systems in Streptococcus lactis. Plasmid 11, 260–263.

    CAS  Google Scholar 

  • Chopin, M.-C, Chopin, A., Rouault, A. and Galleron, N. (1989) Insertion and amplification of foreign genes in the Lactococcus lactis subsp. lactis chromosome. Appl. Environ. Microbiol. 55, 1769–1774.

    PubMed  CAS  Google Scholar 

  • Chow, J.J., Batt, C.A. and Sinskey, A.J. (1988) Characterization of Lactobacillus bulgaricus bacteriophage ch2. Appl. Environ. Microbiol. 54, 1138–1142.

    PubMed  CAS  Google Scholar 

  • Chung, D.K., Chung, S.K., and Batt, C.A. (1992) Antisense RNA directed against the major capside protein of Lactococcus lactis subsp. cremoris bacteriophage 4–1 confers partial resistance to the host. Appl. Microbiol. Biotechnol. 37, 79–83.

    PubMed  CAS  Google Scholar 

  • Cluzel, P.J., Chopin, A., Ehrlich, S.D., and Chopin, M.-C. (1991) Phage abortive infection mechanism from Lactococcus lactis subsp. lactis, expression of which is mediated by an iso-ISS1 element. Appl. Environ. Microbiol. 57, 3547–3551.

    PubMed  CAS  Google Scholar 

  • Cluzel, P.J., Vlaux, M., Rousseau, M. and Accolas, J.-P. (1987) Evidence for temperate bacteriophages in two strains of Lactobacillus bulgaricus. J. Dairy Res. 54, 397–405.

    CAS  Google Scholar 

  • Coffey, A.G., Fitzgerald, G.F., and Daly, C. (1991a) Cloning and characterization of the determinant for abortive infection of bacteriophage from lactococcal plasmid pC1829. J. Gen. Microbiol. 137, 1355–1362.

    PubMed  CAS  Google Scholar 

  • Coffey, A., Costello, V., Daly, C. and Fitzgerald, G. (1991b) Plasmid encoded bacteriophage insensitivity in members of the genus Lactococcus, with special reference to pCI829. In Genetics and Molecular Biology of Streptococci, Lactococci, and Enterococci (Dunny, G.M., Cleary, P.P., and McKay, L.L. eds), American Society for Microbiology, Washington, DC, pp. 131–135.

    Google Scholar 

  • Coffey, A.G., Fitzgerald, G.F. and Daly, C. (1989) Identification and characterization of a plasmid encoding abortive infection from Lactococcus lactis ssp. lactis UC811. Neth. Milk Dairy J. 43, 229–244.

    CAS  Google Scholar 

  • Coleman, J., Hirasuma, A., Inokuchi, Y. Green, P.J. and Inoye, M. (1985) A novel immune system against bacteriophage infection using complementary RNA (micRNA). Nature (London) 315, 601.

    CAS  Google Scholar 

  • Collins, E.B. (1958) Changes in the bacteriophage sensitivity of lactic streptococci. J. Dairy Sci. 41, 41–48.

    CAS  Google Scholar 

  • Collins, E.B. (1956) Host-controlled variations in bacteriophages active against lactic streptococci. Virology 2, 261–271.

    PubMed  CAS  Google Scholar 

  • Costello, V. (1988) Characterization of bacteriophage-host interactions in Streptococcus cremoris UC503 and related lactic streptococci. PhD Thesis, The National University of Ireland.

    Google Scholar 

  • Coveny, J.A. (1989) Characterization of lactococcal bacteriophage based on morphology, host range, DNA restriction endonuclease patterns, DNA hybridization and structural protein profiles. PhD Thesis, National University of Ireland.

    Google Scholar 

  • Coveney, J.A., Fitzgerald, G.F., and Daly, C. (1987) Detailed characterization and comparison of four lactic streptococcal bacteriophages based on morphology, restriction mapping, DNA homology, and structural protein analysis. Appl. Environ. Microbiol. 53, 1439–1447.

    PubMed  CAS  Google Scholar 

  • Daly, C. and Fitzgerald, G.F. (1982) Bacteriophage DNA restriction and the lactic streptococci. Microbiology — 1982, (Schlessinger, D., ed.) American Society, for Microbiology, Washington, D.C., pp. 213–216.

    Google Scholar 

  • Daly, C. and Fitzgerald, G.F. (1987) Mechanisms of bacteriophage insensitivity in the lactic streptococci. In Streptococcal Genetics (Ferretti, J. and Curtiss, R. eds.). American Society for Microbiology, Washington, D.C., U.S.A. pp. 259–268.

    Google Scholar 

  • Davidson, B.E., Powell, I.B., and Hillier, A.J. (1990) Temperate bacteriophages and lysogeny in lactic acid bacteria. FEMS Microbiol, Rev. 87, 79–90.

    CAS  Google Scholar 

  • Davies, F.L. and Gasson, M.J. (1984) Bacteriophage of dairy lactic acid bacteria. In Advances in the Microbiology and Biochemistry of Cheese and Fermented Milk (Davies, F.L. and Law, B.A., eds.). Elsevier Applied Science Publishers, New York, pp. 127–151.

    Google Scholar 

  • de Vos, W.M. (1989) On the carrier state of bacteriophages in starter lactococci: an elementary explanation involving a bacteriophage resistance plasmid. Neth. Milk Dairy J. 43, 221–227.

    Google Scholar 

  • de Vos, W.M. and Davies, F.L. (1984) Plasmid DNA in lactic streptococci: bacteriophage resistance and proteinase plasmids in Streptococcus cremoris SK11. Third European Congress on Biotechnology. Vol III, Verlag Chemie, Weinheim, pp. 201–205.

    Google Scholar 

  • de Vos, W.M., Underwood, H.M. and Davies, F.L. (1984) Plasmid encoded bacteriophage resistance in Streptococcus cremoris SK11. FEMS Microbiol. Lett. 23, 175–178.

    Google Scholar 

  • Dinsmore, P.K. and Klaenhammer, T.R. (1992) IS946-mediated integration of an abortive bacteriophage resistance gene (hsp) into the L. lactis subsp. lactis genome. J. Dairy Sci. 75, 113 (Abstract).

    Google Scholar 

  • Duckworth, D.H., Glenn, J. and McCorquodale, D.J. (1981) Inhibition of bacteriophage replication by extrachromosomal genetic elements. Microbiol. Rev. 45, 52–71.

    PubMed  CAS  Google Scholar 

  • Dunny, G.M., Krug, D.A., Pan, C-L. and Ledford, R.A. (1988) Identification of cell wall antigens associated with a large conjugative plasmid encoding phage resistance and lactose fermentation ability in lactic streptococci. Biochimie 70, 443–450.

    PubMed  CAS  Google Scholar 

  • Durmaz, E. and Klaenhammer, T.R. (1991) A fourth mechanism for bacteriophage resistance in Lactococcus lactis subsp. lactis ME2. J. Dairy Sci. 74, 120 (Abstract).

    Google Scholar 

  • Durmaz, E. and Klaenhammer, T.R. (1992) Molecular characterization of a second abortive phage resistance gene present in L. lactis subsp. lactis ME2. J. Bacteriol. 174, 7463–7469.

    PubMed  CAS  Google Scholar 

  • Fitzgerald, G.F., Daly, C, Brown, L.R. and Gingeras, T.R. (1982) ScrFI: a new sequence-specific endonuclease from Streptococcus cremoris. Nucleic Acids Research 10, 8171–8179.

    CAS  Google Scholar 

  • Fitzgerald, G.F. and Gasson, M.J. (1988) In vivo gene transfer systems and transposons. Biochimie 70, 489–502.

    PubMed  CAS  Google Scholar 

  • Forsman, P. and Alatossava, T. (1991) Genetic variation of Lactobacillus delbrueckii ssp. lactis phages isolated from cheese processing plants in Finland. Appl. Environ. Microbiol. 57, 1805–1812.

    PubMed  CAS  Google Scholar 

  • Fremaux, C.F., De Antoni, G.L. and Klaenhammer, T.R. (1992) Genetic organization and sequence of the region encoding integrative functions from Lactobacillus gasseri temperate phage Ï•adh. Gene 126, 61–66.

    Google Scholar 

  • Froseth, B.R., Harlander, S.K. and McKay, L.L. (1988) Plasmid-mediated reduced phage sensitivity in Streptococcus lactis KR5. J. Dairy Sci. 71, 275–284.

    PubMed  CAS  Google Scholar 

  • Gasson, M.J. (1983) Genetic transfer systems in lactic acid bacteria. Antonie van Leeuwenhoek 49, 275–282.

    PubMed  CAS  Google Scholar 

  • Gasson, M.J. and Davies, F.L. (1984) The genetics of dairy lactic acid bacteria. In Advances in the Microbiology and Biochemistry of Cheese and Fermented Milk (Davies, F.L. and Law, B.A., eds.). Elsevier Applied Science Publishers, New York, pp 99–126.

    Google Scholar 

  • Gautier, M. and Chopin, M-C. (1987) Plasmid-determined restriction/modification systems and abortive infection in Streptococcus cremoris. Appl. Environ. Microbiol. 53, 923–927.

    CAS  Google Scholar 

  • Gonzalez, C.F. and Kunka, B.S. (1985) Transfer of sucrose-fermenting ability and nisin production phenotype among lactic streptococci. Appl. Environ. Microbiol. 49, 627–633.

    PubMed  CAS  Google Scholar 

  • Harrington, A. and Hill, C. (1991) Construction of a bacteriophage-resistant derivative of Lactococcus lactis subsp. lactis 425A by using the conjugal plasmid pNP40. Appl. Environ. Microbiol. 57, 3405–3409.

    PubMed  CAS  Google Scholar 

  • Heap, H.A. and Jarvis, A.W. (1980) A comparison of prolate and isometric-headed lactic streptococcal bacteriophages. N.Z.J. Dairy Sci. Technol. 15, 75–81.

    Google Scholar 

  • Heap, H.A. and Lawrence, R.C. (1988) Culture systems for the dairy industry. In Developments in Food Microbiology (Robinson, ed.). Vol. 4. Elsevier Applied Science, Amsterdam, pp. 149–185.

    Google Scholar 

  • Heap, H.A. and Jarvis, A.W. (1980) A comparison of prolate- and isometric-headed lactic streptococcal bacteriophages. N.ZJ. Dairy Sci. Technol. 15, 75–81.

    Google Scholar 

  • Higgins, D.L., Sanozky-Dawes, R.B. and Klaenhammer, T.R. (1988) Restriction and modification activities from Streptococcus lactis ME2 are encoded by a self-transmissible plasmid, pTN20, that forms cointegrates during mobilization of lactose-fermenting ability. J. Bacteriol. 170, 3435–3442.

    PubMed  CAS  Google Scholar 

  • Hill, C., Pierce, K. and Klaenhammer, T.R. (1989a) The conjugative plasmid pTR2030 encodes two bacteriophage defense mechanisms in lactococci, restriction modification (R+/M+) and abortive infection (Hsp+). Appl. Environ. Microbiol. 55, 2416–2419.

    PubMed  CAS  Google Scholar 

  • Hill, C., Romero, D.A., McKenney, D.S., Finer, K.R. and Klaenhammer, T.R. (1989b) Localization, cloning and expression of genetic determinants for bacteriophage resistance (Hsp) from the conjugative plasmid pTR2030. Appl. Environ. Microbiol. 55, 1684–1689.

    PubMed  CAS  Google Scholar 

  • Hill, C., Miller, L.A., and Klaenhammer, T.R. (1990a) Nucleotide sequence and distribution of the pTR2030 resistance determinant (hsp) which aborts bacteriophage infection in lactococci. Appl. Environ. Microbiol. 56, 2255–2258.

    PubMed  CAS  Google Scholar 

  • Hill, C., Miller, L.A. and Klaenhammer, T.R. (1990b) Cloning, expression, and sequence determination of a bacteriophage fragment encoding bacteriophage resistance in Lactococcus lactis. J. Bacteriol. 172, 6419–6426.

    PubMed  CAS  Google Scholar 

  • Hill, C., Massey, I.J. and Klaenhammer, T.R. (1991a) Rapid method to characterize lactococcal bacteriophage genomes. Appl. Environ. Microbiol. 57, 283–288.

    PubMed  CAS  Google Scholar 

  • Hill, C., Miller, L.A. and Klaenhammer, T.R. (1991b) The bacteriophage resistance plasmid forms high-molecular weight multimers in lactococci. Plasmid 25, 105–112.

    PubMed  CAS  Google Scholar 

  • Hill, C., Miller, L.A. and Klaenhammer, T.R. (1991c) In vivo genetic exchange of a functional domain from a type II A methylase between lactococcal plasmid pTR2030 and a virulent bacteriophage. J. Bacteriol. 173, 4363–4370.

    PubMed  CAS  Google Scholar 

  • Huggins, A.R. and Sandine, W.E. (1979) Selection and characterization of phage insensitive lactic streptococci. J. Dairy Sci. 62, 70-71.

    Google Scholar 

  • Hull, R.R. (1983) Factory-derived starter cultures for the control of bacteriophage in cheese manufacture. Aust. J. Dairy Technol. 38, 149–153.

    Google Scholar 

  • Ishibashi, K., Takesue, S., Watanabe, K and Oishi, K. (1982) Use of lectins to characterise the receptor sites for bacteriophage PL—1 of Lactobacillus casei. J. Gen. Microbiol. 128, 2251–2259.

    CAS  Google Scholar 

  • Jarvis, A.W. (1977) The serological differentiation of lactic streptococcal bacteriophage. N.Z.J. Dairy Sci. Technol. 12, 176–181.

    Google Scholar 

  • Jarvis, A.W. (1981) The use of whey-derived phage-resistant starter strains in New Zealand cheese plants. N.Z.J. Dairy Sci. Technol. 16, 25–31.

    Google Scholar 

  • Jarvis, A.W. (1984a) Differentiation of lactic streptococcal phages into phage species by DNA-DNA homology. Appl. Environ. Microbiol. 47, 343–349.

    PubMed  CAS  Google Scholar 

  • Jarvis, A.W. (1984b) DNA-DNA homology between lactic streptococci and their temperate and lytic phages. Appl. Environ. Microbiol. 47, 1031–1038.

    PubMed  CAS  Google Scholar 

  • Jarvis, A.W. (1988) Conjugal transfer in lactic streptococci of plasmid-encoded insensitivity to prolate- and small isometric-headed bacteriophages. Appl. Environ. Microbiol. 54, 777–783.

    PubMed  CAS  Google Scholar 

  • Jarvis, A.W. (1989) Bacteriophages of lactic acid bacteria. J. Dairy Sci. 72, 3406–3428.

    Google Scholar 

  • Jarvis, A.W. and Klaenhammer, T.R. (1986) Bacteriophage resistance conferred on lactic streptococci by the conjugative plasmid pTR2030: effects on small isometric-, large isometric-, and prolate-headed phages. Appl. Environ. Microbiol. 1272–1277.

    Google Scholar 

  • Jarvis, A.W. and Meyer, J. (1986) Electron microscopic heteroduplex study and restriction endonuclease cleavage analysis of the DNA genomes of three lactic streptococcal bacteriophages. Appl. Environ. Microbiol. 51, 566–571.

    PubMed  CAS  Google Scholar 

  • Jarvis, A.W., Fitzgerald, CF., Mata, M., Mercenier, A., Neve, H., Powell, I.B., Ronda, C, Saxelin, M. and Teuber, M. (1991) Species and type phages of lactococcal bacteriophages. Intervirology 32, 2–9.

    PubMed  CAS  Google Scholar 

  • Jarvis, A.W., Heap, H.A. and Limsowtin, G.K.Y. (1989) Resistance against industrial bacteriophages conferred on lactococci by plasmid pAJ1106 and related plasmids. Appl. Environ. Microbiol. 55, 1537–1543.

    PubMed  CAS  Google Scholar 

  • Jimeno, J., Casey, M.G., Jenni, E. and Accolas, J.-P. (1990) A new type of bacteriophage of Lactobacillus delbrueckii. FEMS Microbiol. Rev. 87, 58 (Abstract).

    Google Scholar 

  • Josephsen, J.J. and Klaenhammer, T.R. (1990) Stacking of three different restriction and modification systems in Lactococcus lactis by cotransformation. Plasmid 23, 71–75.

    PubMed  CAS  Google Scholar 

  • Josephsen, J.J. and Vogensen, F.K. (1989) Identification of three different plasmid-encoded restriction/modification systems in Streptococcus lactis subsp. cremoris W56. FEMS Microbiol. Lett. 59, 161–166.

    CAS  Google Scholar 

  • Kelly, W., Dobson, J., Jorck-Ramberg, D., Fitzgerald, G. and Daly, C. (1990) Introduction of bacteriophage resistance plasmids into commercial Lactococcus starter strains. FEMS Microbiol. Rev. 87, P63 (Abstract).

    Google Scholar 

  • Keogh, B.P. (1973) Adsorption, latent period and burst size of phages of some strains of lactic streptococci. J. Dairy Res. 40, 303–309.

    Google Scholar 

  • Keogh, B.P. (1980) Appraisal of media and methods for assay of bacteriophages of lactic streptococci. Appl. Environ. Microbiol. 40, 798–802.

    PubMed  CAS  Google Scholar 

  • Keogh, B.P. and Pettingiii, G. (1983) Adsorption of bacteriophage lb7 on Streptococcus cremoris EB7. Appl. Environ. Microbiol 45, 1946–1948.

    PubMed  CAS  Google Scholar 

  • Keogh, B.P. and Shimmin, P.D. (1974) Morphology of the bacteriophages of lactic streptococci. Appl. Microbiology 27, 411–415.

    CAS  Google Scholar 

  • Khosaka, T. (1977) Physicochemical properties of virulent Lactobacillus phage containing DNA with cohesive ends. J. Gen. Virol. 37, 209–214.

    Google Scholar 

  • Kim, S.G. and Batt, CA. (1991a) Molecular characterization of a Lactococcus lactis bacteriophage F4–1. Food Microbiol. 8, 15–26.

    CAS  Google Scholar 

  • Kim, S.G. and Batt, C.A. (1991b) Nucleotide sequence and deletion analysis of a gene coding for a structural protein of Lactococcus lactis bacteriophage F4–1. Food Microbiol. 8, 27–36.

    CAS  Google Scholar 

  • Kim, S.G. and Batt, C.A. (1991c) Identification of a nucleotide sequence conserved in Lactococcus lactis bacteriophages. Gene 98, 95–100.

    PubMed  CAS  Google Scholar 

  • Kim, S.G. and Batt, C. (1991d) Antisense mRNA-mediated bacteriophage resistance in Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 57, 1109–1113.

    PubMed  CAS  Google Scholar 

  • King, W.R., Collins, E.B. and Barrett, E.L. (1983) Frequencies of bacteriophage resistant and slow acid-producing variants of Streptococcus cremoris. Appl. Environ. Microbiol. 45, 1481–1485.

    PubMed  CAS  Google Scholar 

  • Kita, K., Kotani, H., Sugisake, H. and Takanami, M. (1989) The Fokl restriction-modification system. I. Organization and nucleotide sequences of the restriction and modification genes. J. Bio. Chem. 264, 5751–5756.

    CAS  Google Scholar 

  • Klaenhammer, T.R. (1984) Interactions of bacteriophages with lactic streptococci. Adv. Appl. Microbiol. 30, 1–29.

    CAS  Google Scholar 

  • Klaenhammer, T.R. (1987) Plasmid-directed mechanisms for bacteriophage defense in lactic streptococci. FEMS Microbiol. Rev. 46, 313–325.

    CAS  Google Scholar 

  • Klaenhammer, T.R. (1989) Genetic characterization of multiple mechanisms of phage defense from a prototype phage-insensitive strain, Lactococcus lactis ME2. J. Dairy Sci. 72, 3429–3442.

    CAS  Google Scholar 

  • Klaenhammer, T.R. (1991) Development of bacteriophage-resistant strains of lactic acid bacteria. Biochemical Soc. Transactions 19, 675–681.

    CAS  Google Scholar 

  • Klaenhammer, T.R. and Sanozky, R.B. (1985) Conjugal transfer from Streptococcus lactis ME2 of plasmids encoding phage resistance, nisin resistance and lactose-fermenting ability: evidence for a high-frequency conjugative plasmid responsible for abortive infection of virulent bacteriophage. J. Gen. Microbiol. 131, 1531–1541.

    PubMed  CAS  Google Scholar 

  • Klaenhammer, T.R. and Sing, W.D. (1991) A novel rotation strategy using different phage defenses in a single-strain starter culture system. J. Dairy Sci. 74, 120 (Abstract).

    Google Scholar 

  • Kruger, D.H., and Bickle, T.A. (1983) Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts. Microbiol. Rev. 47, 345–360.

    PubMed  CAS  Google Scholar 

  • Krusch, U. Neve, H., Luschei, B. and Teuber, M. (1987) Characterization of virulent phages of Streptococcus salivarius subsp. thermophilus by host specificity and electron microscopy. Kieler Milchwirtschaftl. Forschungsberichte 39, 155–167.

    Google Scholar 

  • Lahbib-Mansais, Y., Mata, M. and Ritzenthaler, P. (1988) Molecular taxonomy of Lactobacillus phages. Biochimie 70, 429–435.

    PubMed  CAS  Google Scholar 

  • Laible, N.J., Rule, P.L., Harlander, S.K., and McKay, L.L. (1987) Identification and cloning of plasmid deoxyribonucleic acid coding for abortive phage infection from Streptococcus lactis ssp. diacetylactis KR2. J. Dairy Sci. 70, 2211–2219.

    CAS  Google Scholar 

  • Lakshmidevi, G. (1988) Molecular biology of temperate streptococcal phages. PhD Thesis, University of Melbourne, Melbourne, Australia.

    Google Scholar 

  • Lakshmidevi, G., Davidson, B.E., and Hillier, A.J. (1988) Circular permutation of the genome of a temperate bacteriophage from Streptococcus cremoris BK5. Appl. Environ. Microbiol. 54, 1039–1045.

    PubMed  CAS  Google Scholar 

  • Lakshmidevi, G., Davidson, B.E. and Hillier, A.J. (1990) Molecular characterization of promoters of the Lactococcus lactis subsp. cremoris temperate bacteriophage BK5-T and identification of a phage gene implicated in the regulation of promoter activity. Appl. Environ. Microbiol. 56, 934–942.

    PubMed  CAS  Google Scholar 

  • Langella, P., and Chopin, A. (1989) Effect of restriction-modification systems on transfer of foreign DNA into Lactococcus lactis subsp. lactis. FEMS Microbiol. Lett. 59, 301–306.

    CAS  Google Scholar 

  • Lauster, R. (1989) Evolution of type II DNA methyltransferases. A gene duplication model. J. Mol. Biol. 206, 313–321.

    PubMed  CAS  Google Scholar 

  • Lautier, M. and Novel, G. (1987) DNA-DNA hybridization in lactic streptococcal temperate and virulent phages, belonging to distinct lytic groups. J. Ind. Microbiol. 2, 151–158.

    CAS  Google Scholar 

  • Lembke, J. and Teuber, M. (1981) Serotyping of morphologically identical bacteriophages of lactic streptococci by immunoelectronmicroscopy. Milchwissenschaft 36, 10–12.

    Google Scholar 

  • Lembke, J., Krusch, U., Lompe, A. and Teuber, M. (1980) Isolation and ultrastructure of bacteriophages of group N (lactic) streptococci. Zbl. Bakt., I. abt. Orig. C. 1, 79–91.

    Google Scholar 

  • Lillehaug, D., Lindqvist, B.H. and Birkeland, N.K. (1991) Characterization of Ï•LC3, a Lactococcus lactis subsp. cremoris temperate bacteriophage with cohesive single-stranded DNA ends. Appl. Environ. Microbiol. 57, 3206–3211.

    PubMed  CAS  Google Scholar 

  • Limsowtin, G.K.Y, and Terzaghi, B.E. (1976) Phage resistant mutants: their selection and use in cheese factories. N.Z.J. Dairy Sci. Technol. 11, 251–256.

    Google Scholar 

  • Limsowtin, G.K.Y, and Terzaghi, B.E. (1977) Characterization of bacterial isolates from a phage carrying culture of Streptococcus cremoris. N.Z.J. Dairy Sci. Technol. 12, 22–28.

    Google Scholar 

  • Limsowtin, G.K.Y., Heap, H.A. and Lawrence, R.C. (1978) Heterogeneity among strains of lactic streptococci. N.Z.J. Dairy Sci. Technol. 13, 1–8.

    Google Scholar 

  • Marshall, R.J. and Berridge, N.J. (1976) Selection and some properties of phage-resistant starters for cheese making. J. Dairy Res. 43, 449–158.

    CAS  Google Scholar 

  • Mata, M. and Titzenthaler, P. (1988) Present state of lactic acid bacteria phage taxonomy. Biochimie 70, 395–399.

    PubMed  CAS  Google Scholar 

  • Mata, M., Trautwetter, A., Luthard, G. and Ritzenthaler, P. (1986) Thirteen virulent and temperate bacteriophages of Lactobacillus bulgaricus and Lactobacillus lactis belong to a single DNA homology group. Appl. Environ. Microbiol. 52, 812–818.

    PubMed  CAS  Google Scholar 

  • Mayo, B., Hardisson, C. and Brana, A.F. (1991) Nucleolytic activities in Lactococcus lactis subsp. lactis NCDO 497. FEMS Microbiol. Lett. 79, 195–198.

    CAS  Google Scholar 

  • McKay, L.L. (1982) Regulation of lactose metabolism in dairy streptococci. In Developments in Food Microbiology, (Davies, R., ed.), Appl. Science Publishers, London, pp. 153–182.

    Google Scholar 

  • McKay, L.L. (1983) Functional properties of plasmids in lactic streptococci. Antonie van Leeuwenhoek 49, 259–274.

    PubMed  CAS  Google Scholar 

  • McKay, L.L. and Baldwin, K.A. (1974) Simultaneous loss of proteinase and lactose-utilizing enzyme activities in Streptococcus lactis and reversal of loss by transduction. Appl. Environ. Microbiol. 28, 342–346.

    CAS  Google Scholar 

  • McKay, L.L. and Baldwin, K.A. (1984) Conjugative 40-megadalton plasmid in Streptococci lactis subsp. diacetylactis DRC3 is associated with resistance to nisin and bacteriophage. Appl. Environ. Microbiol. 47, 68–74.

    PubMed  CAS  Google Scholar 

  • McKay, L.L., Bohanon, M.J., Polzin, K.M., Rule, P.L. and Baldwin, K.A. (1989) Localization of separate genetic loci for reduced sensitivity towards small isometric-headed bacteriophage sk 1 and prolate-headed bacteriophage c2 on pGBK17 from Lactococcus lactis subsp. lactis KR2. Appl. Environ. Microbiol. 55, 2702–2709.

    PubMed  CAS  Google Scholar 

  • Mercenier, A. and Lemoine, Y. (1989) Genetics of Streptococcus thermophilus: A Review. J. Dairy Sci. 72, 3444–3454.

    Google Scholar 

  • Mercenier, A., Robert, C., Romero, D.A., Slos, P. and Lemoine, Y. (1987) Transfection of Streptococcus thermophilus spheroplasts. In Streptococcal Genetics, (J.J. Ferretti and R. Curtiss III, eds) American Society for Microbiology, Washington, DC, USA, pp. 234–237

    Google Scholar 

  • Moineau, S., Durmaz, E.D., Pandian, S. and Klaenhammer, T.R. (1992a) Use of monoclonal antibodies to investigate mechanisms of phage abortion in Lactococcus lactis. J. Dairy Sci. 75, 113 (abstract).

    Google Scholar 

  • Moineau, S., Fortier, J., Ackermann, H.W. and Pandian, S. (1992b) Characterization of lactococcal bacteriophages from Quebec cheese plants. Can. J. Microbiol. 38, 875–882.

    CAS  Google Scholar 

  • Mullan, W.M.A., Daly, C. and Fox, P. (1981) Effect of cheese making temperatures on the interactions of lactic streptococci and their phages. J. Dairy Res. 48, 465–471.

    Google Scholar 

  • Mullan, W.M.A. and Crawford, R.J.M. (1985) Partial purification and some properties of Ï•pc2 (w) lysin, a lytic enzyme produced by phage-infected cells of Streptococcus lactis C2. J. Dairy Res. 52, 123–138.

    PubMed  CAS  Google Scholar 

  • Murphy, M.C., Steele, J.L., Daly, C. and McKay, L.L. (1988) Concomitant conjugal transfer of reduced-bacteriophage-sensitivity mechanisms with lactose-and sucrose-fermenting ability in lactic streptococci. Appl. Environ. Microbiol. 54, 1951–1956.

    PubMed  CAS  Google Scholar 

  • Nes, I.F., Brendehaug, J. and von Husby, K.O. (1988) Characterization of the bacteriophage B2 of Lactobacillus plantarum ATCC 8014. Biochimie 70, 423–427.

    PubMed  CAS  Google Scholar 

  • Neve, H., Lilischkis, R. and Teuber, M. (1988) Characterization of a virulent bacteriophage of Leuconostoc mesenteroides subsp. cremoris. Kieler Milchwirtschaftliche Forschungsberichte 40, 205–212.

    Google Scholar 

  • Neve, H., Krusch, U. and Teuber, M. (1989) Classification of virulent bacteriophages of Streptococcus salivarius subsp. thermophilus isolated from yoghurt and Swiss-type cheese. Appl. Microbiol. Biotechnol. 30, 624–629.

    CAS  Google Scholar 

  • Neve, H., Krusch, U. and Teuber, M. (1990) Virulent and temperate bacteriophages of thermophilic lactic acid streptococci. FEMS Microbiol. Rev. 87, 58.

    Google Scholar 

  • Neve, H. and Teuber, M. (1991) Basic microbiology and molecular biology of bacteriophages of lactic acid bacteria in dairies. Bulletin of the International Dairy Federation No. 263, pp. 3–15.

    Google Scholar 

  • Ogata, S. (1980) Bacteriophage contamination in industrial processes. Biotechnol. Bioengineering 22, 177–193.

    CAS  Google Scholar 

  • Oram, J.D. (1971) Isolation and properties of a phage receptor substance from the plasma membrane of Streptococcus lactis ML3. J. Gen. Virol. 13, 59–71.

    PubMed  CAS  Google Scholar 

  • Oram, J.D. and Reiter, B. (1965) Phage-associated lysins affecting group n and group D streptococci. J. Gen. Microbiol. 40, 57–63.

    PubMed  CAS  Google Scholar 

  • Parada, J.L., La Via, M.I. and Solari, A. (1984) Isolation of Streptococcus lactis bacteriophages and their interaction with the host cell. Appl. Environ. Microbiol. 47, 1352–1354.

    PubMed  CAS  Google Scholar 

  • Pearce, L.E. (1978) The effect of host-controlled modification on the replication rate of a lactic streptococcal bacteriophage. N.Z.J. Dairy Sci. Technol. 13, 166–171.

    Google Scholar 

  • Platteeuw, C. and de Vos, W.M. (1992) Location, characterization and expression of lytic enzyme-encoding gene, lytA, of Lactococcus lactis bacteriophage phi US3. Gene. 118, 115–120.

    PubMed  CAS  Google Scholar 

  • Polzin, K.M., and McKay, L.L. (1991) Identification, DNA sequence, and distribution of IS981, a new high-copy-number insertion sequence in lactococci. Appl. Environ. Microbiol. 57, 734–743.

    PubMed  CAS  Google Scholar 

  • Polzin, K.M. and Shimizu-Kadota, M. (1987) Identification of a new insertion element, similar to Gram-negative IS26, on the lactose plasmid of Streptococcus lactis ML3. J. Bacteriol. 169, 5481–5488.

    PubMed  CAS  Google Scholar 

  • Powell, I.B. and Davidson, B.E. (1985) Characterization of streptococcal bacteriophage c6A. J. Gen. Microbiol. 66, 2737–2741.

    CAS  Google Scholar 

  • Powell, I.B. and Davidson, B.E. (1986) Resistance to in vitro restriction of DNA from lactic streptococcal bacteriophages c6A. Appl. Environ. Microbiol. 51, 1358–1360.

    PubMed  CAS  Google Scholar 

  • Powell, LB., Ward, A.C., Hillier, A.J. and Davidson, B.E. (1990) Simultaneous conjugal transfer in Lactococcus to genes involved in bacteriocin production and reduced susceptibility to bacteriophages. FEMS Microbiol. Letts. 72, 209–214.

    CAS  Google Scholar 

  • Powell, I.B., Tullock, D.L., Hillier, A.J. and Davidson, B.E. (1992) Phage DNA synthesis and host DNA degradation in the life cycle of Lactococcus lactis bacteriophage c6A. J. Gen. Microbiol. 138, 945–950.

    PubMed  CAS  Google Scholar 

  • Ptashne, M. (1986) A Genetic Switch: Gene Control and Phage Lambda, Blackwell Scientific Publications, Palo Alto, CA, U.S.A.

    Google Scholar 

  • Prevots, F., Mata, M. and Ritzenthaler, P. (1990) Taxonomic differentiation of 101 lactococcal bacteriophages and characterization of bacteriophages with unusually large genomes. Appl. Environ. Microbiol. 56, 2180–2185.

    PubMed  CAS  Google Scholar 

  • Raya, R.R., Kleeman, E.G., Luchansky, J.B. and Klaenhammer, T.R. (1989) Characterization of the temperate bacteriophage Ï•adh and plasmid transduction in Lactobacillus acidophilus ADH. Appl. Environ. Microbiol. 55, 2206–2213.

    PubMed  CAS  Google Scholar 

  • Raya, R.R., De Antoni, G.L., Walker, D.C. and Klaenhammer, T.R. (1991) Construction of a phage Ï•adh-mediated site-specific insertional vector, and chromosomal integration in Lactobacillus gasseri ADH. J. Dairy Sci. 74, 122 (abstract).

    Google Scholar 

  • Raya, R.R., Fremaux, C.F., De Antoni, G.L. and Klaenhammer, T.R, (1992) Site-specific integration of the temperate bacteriophage Ï•adh into the Lactobacillus gasseri chromosome and molecular characterization of the phage (attP) and bacterial (attB) attachment sites. J Bacteriol. 174, 5584–5592.

    PubMed  CAS  Google Scholar 

  • Raya, R.R. and Klaenhammer, T.R. (1992) High frequency transduction by Lactobacillus gasseri bacteriophage Ï•adh. Appl. Environ. Microbiol. 58, 187–193.

    PubMed  CAS  Google Scholar 

  • Reinbold, G.W., Reddy, M.S. and Hammond, E.G. (1982) Ultrastructure of bacteriophages active against Streptococcus thermophilus, Lactobacillus bulgaricus, Lactobacillus lactis and Lactobacillus helveticus. J. Food Prot. 45, 119–124.

    Google Scholar 

  • Reiter, B. (1949) Lysogenic strains of lactic streptococci. Nature 164, 667–668.

    PubMed  CAS  Google Scholar 

  • Relano, P., Mata, M., Bonneau, M. and Ritzenthaler, P. (1987) Molecular characterization and comparison of 38 virulent and temperate bacteriophages of Streptococcus lactis. J. Gen. Microbiol. 133, 3053–3063.

    PubMed  CAS  Google Scholar 

  • Reyes-Gavilan, C.G., Limsowtin, G.K.Y., Sechaud, L., Veaux, M. and Accolas, J.P. (1990) Evidence for a plasmid-linked restriction-modification system in Lactobacillus helveticus. Appl. Environ. Microbiol. 56, 3412–3419.

    Google Scholar 

  • Reyrolle, J., Chopin, M.C., Letellier, F. and Novel, G. (1982) Lysogenic strains of lactic acid streptococci and lytic spectra of their temperate bacteriophages. Appl. Environ. Microbiol. 43, 349–356.

    PubMed  CAS  Google Scholar 

  • Romero, D.A. and Klaenhammer, T.R. (1990a) Abortive phage infection and restriction/modification activities directed by pTR2030-determinants are enhanced by recombination with conjugal elements in lactococci. J. Gen. Microbiol. 136, 1817–1824.

    CAS  Google Scholar 

  • Romero, D.A. and Klaenhammer, T.R. (1990b) Characterization of Gram-positive insertion sequence IS946, an iso-ISS1 element, isolated from the conjugative lactococcal plasmid pTR2030. J. Bacteriol. 172, 4151–4160.

    PubMed  CAS  Google Scholar 

  • Sanders, M.E. (1987) Bacteriophages of industrial importance. In Phage Ecology, Goyal, S.M., Gerba, C.P., and Bitton, G. (eds), Wiley Interscience, John Wiley and Sons, NY, pp 211–244.

    Google Scholar 

  • Sanders, M.E. (1988) Phage resistance in lactic acid bacteria. Biochimie 70, 411–421.

    PubMed  CAS  Google Scholar 

  • Sanders, M.E. and Klaenhammer, T.R. (1980) Restriction and modification in group N streptococci: effect of heat on development of modified lytic bacteriophage. Appl. Environ. Microbiol. 40, 500–506.

    PubMed  CAS  Google Scholar 

  • Sanders, M.E. and Klaenhammer, T.R. (1981) Evidence for plasmid linkage of restriction and modification in Streptococcus cremoris KH. Appl. Environ. Microbiol. 42, 944–950.

    PubMed  CAS  Google Scholar 

  • Sanders, M.E. and Klaenhammer, T.R. (1983) Characterization of phage-insensitive mutants from a phage-sensitive strain of Streptococcus lactis: evidence for a plasmid determinant that prevents phage adsorption. Appl. Environ. Microbiol, 46, 1125–1133.

    PubMed  CAS  Google Scholar 

  • Sanders, M.E. and Klaenhammer, T.R. (1984) Phage resistance in a phage-insensitive strain of Streptococcus lactis: temperature-dependent phage development and host-controlled phage replication. Appl. Environ. Microbiol. 47, 979–985.

    PubMed  CAS  Google Scholar 

  • Sanders, M.E., Leonhard, P.J., Sing, W.E. and Klaenhammer, T.R. (1986) Conjugal strategy for construction of fast acid-producing, bacteriophage-resistant lactic streptococci for use in dairy fermentations. Appl. Environ. Microbiol. 52, 1001–1007.

    PubMed  CAS  Google Scholar 

  • Sanders, M.E. and Schultz, J. (1990) Cloning of phage resistance genes from Lactococcus lactis ssp. cremoris KH. J Dairy Sci. 73, 2044–2053.

    CAS  Google Scholar 

  • Sandine, W.E. (1989) Use of bacteriophage-resistant mutants of lactococcal starters in cheese-making. Neth. Milk Dairy J. 43, 211–219.

    Google Scholar 

  • Saxelin, M.-L., Nurmiaho-Lassila, E.-L., Merilainen, V.T. and Forse, R.I. (1986) Ultrastructure and host specificity of bacteriophages of Streptococcus cremoris, Streptococcus lactis subsp. diacety lactis, and Leuconostoc cremoris from Finnish fermented milk viiii. Appl. Environ. Microbiol. 52, 771–777.

    PubMed  CAS  Google Scholar 

  • Schafer, A., Geis, A., Neve, H. and Teuber, M. (1991) Bacteriophage receptors of Lactococcus lactis subsp. diacetylactis F7/2 and Lactococcus lactis subsp. cremoris Wg2-1. FEMS Microbiol. Lett. 78, 69–74.

    Google Scholar 

  • Sechaud, L., Cluzel, P.-J., Rousseau, M., Baumgartner, A. and Accolas, J.-P. (1988) Bacteriophages of Lactobacilli. Biochimie 70, 401–410.

    PubMed  CAS  Google Scholar 

  • Sechaud, L., Callegari, M.-L., Rousseau, M., Muller, M.-C. and Accolas, J.-P. (1989) Relationship between temperate bacteriophage 0241 and virulent bacteriophage 832-B1 of Lactobacillus helveticus Neth. Milk Dairy J. 43, 261–277.

    Google Scholar 

  • Sechaud, L., Rousseau, M., Limsowtin, G.K.Y., Fayard, B., Callegari, M.-C, Quesnee, P. and Accolas, J.-P. (1992) Comparative study of 35 bacteriophages of Lactobacillus helveticus: morphology and host range. Appl. Environ. Microbiol. 58, 1011–1018.

    PubMed  CAS  Google Scholar 

  • Sharp, P.M. (1986) Molecular evolution of bacteriophages: evidence of selection against the recognition sites of host restriction enzymes. Mol. Biol. Evol. 3, 75–83.

    PubMed  CAS  Google Scholar 

  • Shearman, C., Underwood, H., Jury, K. and Gasson, M. (1989) Cloning and DNA sequence analysis of a Lactococcus bacteriophage lysin gene. Mol. Gen. Genet. 218, 214–221.

    PubMed  CAS  Google Scholar 

  • Shearman, C.A., Hertwig S., Teuber, M., and Gasson, M.J. (1991) Characterization of the prolate-headed lactococcal bacteriophage Ï•ML3: location of the lysin gene and its DNA homology with other prolate-headed phages. J. Gen. Microbiol. 137, 1285–1291.

    CAS  Google Scholar 

  • Shearman, C.A., Jury, K. and Gasson, M.J. (1992) Autolytic Lactococcus lactis expressing a lactococcal bacteriophage lysin gene. Biotechnology. 10, 196–199.

    CAS  Google Scholar 

  • Shimizu-Kadota, M. and Sakurai, T. (1982) Prophage curing in Lactobacillus casei by isolation of a thermoinducible mutant. Appl. Environ. Microbiol. 43, 1284–1287.

    PubMed  CAS  Google Scholar 

  • Shimizu-Kadota, M., Sakurai, T. and Tsuchida, N. (1983) Prophage origin of a virulent phage appearing on fermentations of Lactobacillus casei S-1. Appl. Environ. Microbiol. 45, 669–674.

    PubMed  CAS  Google Scholar 

  • Shimizu-Kadota, M. and Tsuchida, N. (1984) Physical mapping of the virion and the prophage DNAs of a temperate Lactobacillus phage Ï•FSW. J. Gen. Microbiol. 130, 423–430.

    PubMed  CAS  Google Scholar 

  • Shimizu-Kadota, M., Kiwaki, M., Hirokawa, H. and Tsuchida, N. (1985) ISLI: a new transposable element in Lactobacillus casei. Mol. Gen. Genet. 200, 193–198.

    PubMed  CAS  Google Scholar 

  • Sijtsma, L., Sterkenburg, A. and Wouters, J.T.M. (1988) Properties of the cell walls of Lactococcus lactis subsp. cremoris SK110 and SK112 and their relation to bacteriophage resistance. Appl. Environ. Microbiol. 54, 2808–2811.

    PubMed  CAS  Google Scholar 

  • Sijtsma, L., Jansen, N., Hazeleger, W.C., Wouters, J.T.M. and Hellingwerf, K.J. (1990a) Cell surface characteristics of bacteriophage-resistant Lactococcus lactis subsp. cremoris SK110 and its bacteriophage sensitive variant SK112. Appl. Environ. Microbiol, 56, 3230–3233.

    PubMed  CAS  Google Scholar 

  • Sijtsma, L., Wouters, J.T.M. and Hellingwerf, K.J. (1990b) Isolation and characterization of lipoteichoic acid, a cell envelope component involved in preventing phage adsorption from Lactococcus lactis subsp. cremoris SK110. J. Bacteriol. 172, 7126–7130.

    PubMed  CAS  Google Scholar 

  • Sijtsma, L., Hellingwerf, K.J. and Wouters, J.T.M. (1991) Composition and phage binding capacity of cell walls isolated from Lactococcus lactis subsp. cremoris SK110 and SK112. Neth. Milk Dairy J. 45, 81–95.

    CAS  Google Scholar 

  • Simon, D., Rouault, A. and Chopin, M-C. (1985) Protoplast transformation of group N streptococci with cryptic plasmids. FEMS Microbiol. Lett. 26, 239–241.

    CAS  Google Scholar 

  • Sing, W.D. and Klaenhammer, T.R. (1986) Conjugal transfer of bacteriophage resistance determinants on pTR2030 into Streptococcus cremoris strains. Appl. Environ. Microbiol. 51, 1264–1271.

    PubMed  CAS  Google Scholar 

  • Sing, W.D. and Klaenhammer, T.R. (1990a) Characteristics of phage abortion conferred in lactococci by the conjugal plasmid pTR2030. J. Gen. Microbiol. 136, 1807–1815.

    CAS  Google Scholar 

  • Sing, W.D. and Klaenhammer, T.R. (1990b) Plasmid-induced abortive infection in lactococci: a review. J. Dairy Sci. 73, 2239–2251.

    CAS  Google Scholar 

  • Sing, W.D. and Klaenhammer, T.R. (1991) Characterization of restriction and modification plasmids from Lactococcus lactis ssp. cremoris and their effects when combined with pTR2030. J. Dairy Sci. 74, 1133–1144.

    CAS  Google Scholar 

  • Solaiman, D.K.Y, and Somkuti, G.A. (1991) A type II restriction endonuclease of Streptococcus thermophilus ST117. FEMS Microbiol. Lett 80, 75–80.

    CAS  Google Scholar 

  • Sozzi, T., Poulin, J.M., Maret, R. and Pousaz, R. (1978) Isolation of a bacteriophage of Leuconostoc mesenteroides from dairy products. J Appl. Bacteriol. 44, 159–161.

    Google Scholar 

  • Stadhouders, J. and Leenders, G.J.M. (1984) Spontaneously developed mixed-strain cheese starters. Their behaviour towards phages and their use in the Dutch cheese industry. Neth. Milk Dairy J. 38, 157–181.

    Google Scholar 

  • Steele, J.L., and McKay, L.L. (1989) Conjugal transfer of genetic material by L. lactis subsp. lactis 11007. Plasmid 22, 32–43.

    PubMed  CAS  Google Scholar 

  • Steele, J.L., Murphy, M.C., Daly, C. and McKay, L.L. (1989) DNA-DNA homology among lactose- and sucrose-fermenting transconjugants from Lactococcus lactis strains exhibiting reduced bacteriophage sensitivity. Appl. Environ. Microbiol. 55, 240–243.

    Google Scholar 

  • Steenson, L.R. and Klaenhammer, T.R. (1985) Streptococcus cremoris M12R transconjugants carrying the conjugal plasmid pTR2030 are insensitive to attack by lytic bacteriophages. Appl. Environ. Microbiol. 50, 851–858.

    PubMed  CAS  Google Scholar 

  • Steenson, L.R. and Klaenhammer, T.R. (1986) Plasmid heterogeneity in Streptococci cremoris M12R: effects on proteolytic activity and host-dependent phage replication. J. Dairy Sci. 69, 2227–2236.

    PubMed  CAS  Google Scholar 

  • Sterkenburg, A., van Leeuwen, P. and Wouters, J. (1988) Loss of phage resistance encoded by plasmid pSK112 in chemostat cultures of Lactococcus lactis ssp. cremoris SK110. Biochimie 70, 451–456.

    PubMed  CAS  Google Scholar 

  • Stetter, K.O., Priess, H. and Delius, H. (1978) Lactobacillus casei phage PL-1: molecular properties and first transcription studies in vivo and in vitro. Virology 87, 1–12.

    PubMed  CAS  Google Scholar 

  • Szybalski, W., Kim, S.C., Hasan, N., and Podhajska, A.J. (1991) Class-IIS restriction enzymes — a review. Gene 100, 13–26.

    PubMed  CAS  Google Scholar 

  • Terzaghi, B.E. (1976) Morphologies and host sensitivities of lactic streptococcal phages from cheese factories. N.Z.J. Dairy Sci. Technol. 11, 155–163.

    Google Scholar 

  • Teuber, M. (1986) Final report of the achievements of the research programme on construction of phage resistant dairy starter cultures. In, Biomolecular Engineering in the European Community, E. Magnien (ed.) Martinus Nijhoff, Dordecht, The Netherlands, p. 539–547.

    Google Scholar 

  • Teuber, M. and Lembke, J. (1983) the bacteriophages of lactic acid bacteria with emphasis on genetic aspects of group N lactic streptococci. Antonie van Leeuwenhoek 49, 283–295.

    PubMed  CAS  Google Scholar 

  • Teuber, M. and Loof, M. (1987) Genetic characterization of lactic streptococcal bacteriophages. In Streptococcal Genetics (Ferretti, J.J. and Curtiss, R., eds), 250–258. American Society for Microbiology, Washington D.C., U.S.A., pp. 250–258.

    Google Scholar 

  • Thunell, R.K., Sandine, W.E. and Bodyfelt, F.W. (1981) Phage insensitive, multiple-strain starter approach to Cheddar cheese making. J. Dairy Sci. 64, 2270–2277.

    Google Scholar 

  • Thunell, R.K., Sandine, W.E. and Bodyfelt, F.E. (1984) Defined strains and phage insensitive mutants for commercial manufacture of cottage cheese and cultured buttermilk. J. Dairy Sci. 67, 1175–1180.

    Google Scholar 

  • Tiiro, P. and Sarimo, S.S. (1987) Characterization of the genome of some Streptococcus thermophilus phages by restriction endonuclease mapping. FEMS Microbiol. Rev. 46, 39 (abstract).

    Google Scholar 

  • Timmons, P., Hurley, M., Drinan, F.D., Daly, C. and Cogan, T. (1988) Development and use of a defined strain starter system for Cheddar cheese. J. Soc. Dairy Technol. 41, 49–53.

    Google Scholar 

  • Tortorello, M.L., Chang, P.-K., Ledford, R.A. and Dunny, G.M. (1990) Plasmid associated antigens associated with resistance to phage adsorption in Lactococcus lactis. In Abstracts of 3rd International ASM Conference on Streptococcal Genetics, Miami Beach, FL. U.S.A. A/50.

    Google Scholar 

  • Trautwetter, A., Ritzenthaler, P., Alatossava, T. and Mata-Gilsinger, M. (1986) Physical and genetic characterization of the genome of Lactobacillus lactis bacteriophage LL-H. J. Virol. 59, 551–555.

    PubMed  CAS  Google Scholar 

  • Valyasevi, R., Sandine, W.E. and Geller, B.L. (1990) The bacteriophage kh receptor of Lactococcus lactis subsp. cremoris KH is the rhamnose of the extracellular wall polysaccharide. Appl. Environ. Microbiol 56, 1882–1889.

    PubMed  CAS  Google Scholar 

  • Valyasevi, R., Sandine, W.E. and geller, B.L. (1991) A membrane protein is required for bacteriophage c2 infection of Lactococcus lactis subsp. lactis C2. J. Bacteriol. 173, 6095–6100.

    PubMed  CAS  Google Scholar 

  • van der Vossen, J.M.B.M., van der Lelie, D. and Venema, G. (1987) Isolation and characterization of Streptococcus cremoris Wg2 specific promoters. Appl. Environ. Microbiol. 53, 2452–2457.

    PubMed  Google Scholar 

  • Vedamuthu, E.R. and Neville, J.M. (1986) Involvement of a plasmid in production of ropiness (mucoidness) in milk cultures by Streptococcus cremoris MS. Appl. Environ. Microbiol. 51, 677–682.

    PubMed  CAS  Google Scholar 

  • Vedamuthu, E.R. and Neville, J.M. (1987) Phage resistance in Streptococcus lactis ssp. diacetylactis transconjugant SLA3.2501 and its derivatives. J. Dairy Sci. 70, 225–229.

    PubMed  CAS  Google Scholar 

  • Vogensen, F.K. and Josephson, J. (1990) Comparison of R/M systems in Lactococcus lactis. FEMS Microbiol. Rev. 87, P61.

    Google Scholar 

  • Ward, A.C., Davidson, B.E., Hillier, A.J. and Powell, I.B. (1992) Conjugally-transferable phage resistance activities from Lactococcus lactis DRC1. J. Dairy Sci. 75, 683–691.

    Google Scholar 

  • Watanabe, K. and Takesue, S. (1972) The requirement for calcium in infection with Lactobacillus phages. J. Gen. Virol. 17, 19–30.

    PubMed  CAS  Google Scholar 

  • Watanabe, K., Takesue, S. and Ishibashi, K. (1979) Adenosine triphosphage content in Lactobacillus casei and the blender-resistant phage-cell complex-forming ability of cells on infection with PL-1 phage. J. Gen. Virol. 42, 27–36.

    PubMed  CAS  Google Scholar 

  • Watanabe, K., Takesue, S. and Ishibashi, K. (1980) DNA of phage PL-1 active against Lactobacillus casei ATCC 27092. Agric. Biol. Chem. 44, 453-455.

    CAS  Google Scholar 

  • Watanabe, K., Shirabe, M., Nakashima, Y. and Kakita, Y. (1991) The possible involvement of protein synthesis in the injection of PL-1 phage genome into its host, Lactobacillus casei. J. Gen. Microbiol. 137, 2601–2603.

    PubMed  CAS  Google Scholar 

  • Wetzel, A., Neve, H., Gels, A. and Teuber, M. (1986) Transfer of plasmid-mediated phage resistance in lactic acid streptococci. Chem. Mikrobiol. Technol. Lebensm. 10, 86–89.

    Google Scholar 

  • Whitehead, H.R. and Cox, G.A. (1935) The occurrence of bacteriophage in cultures of lactic streptococci. N.Z.J. Dairy Sci. Technol. 16, 319–320.

    Google Scholar 

  • Yokokura, T. (1977) Phage receptor material in Lactobacillus casei. J. Gen. Microbiol. 100, 139–145.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Klaenhammer, T.R., Fitzgerald, G.F. (1994). Bacteriophages and bacteriophage resistance. In: Gasson, M.J., De Vos, W.M. (eds) Genetics and Biotechnology of Lactic Acid Bacteria. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1340-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1340-3_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4584-1

  • Online ISBN: 978-94-011-1340-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics