Skip to main content

Molecular imprinting—a versatile technique for the preparation of separation materials of predetermined selectivity

  • Chapter
Highly Selective Separations in Biotechnology

Abstract

The nature of molecular recognition, especially concerning ligand-receptor interactions, has been a cornerstone of research endeavour this century. From the concept of a receptor proposed by Ehrlich (1909), through Pauling’s (1940) elegant, although later proven incorrect, theory to account for antibody-antigen activity, this field has matured to the point where recognition systems of predetermined selectivity may now be produced. A prime example has been the development of synthetic polymers containing specific recognition sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amato, I. (1992) Looking glass chemistry. Science, 256, 964–966.

    Article  PubMed  CAS  Google Scholar 

  • Andersson, L.I. (1991) Molecular recognition in synthetic polymers. A study of the preparation and use of molecularly imprinted polymers. PhD Thesis, Lund University, Sweden.

    Google Scholar 

  • Andersson, L.I. and Mosbach, K. (1990) Enantiomeric resolution on molecularly imprinted polymers prepared with only non-covalent and non-ionic interactions. J. Chromatog., 516, 313–322.

    Article  CAS  Google Scholar 

  • Andersson, L. I., Sellergren, B. and Mosbach, K. (1984) Imprinting of amino acid derivatives in macroporous polymers. Tetrahedron Lett., 5211–5214.

    Google Scholar 

  • Andersson, L.I., O’Shannessy, D.J. and Mosbach, K. (1990) Molecular recognition in synthetic polymers. Preparation of chiral stationary phases by molecular imprinting of amino acid amides. J. Chromatog., 513, 167–179.

    Article  CAS  Google Scholar 

  • Andersson, L.I., Müller, R., Vlatakis, G. and Mosbach, K. (1994) Mimics of the binding site of opioid receptors obtained by molecular imprinting of enkephalin and morphine. To be published.

    Google Scholar 

  • Arshady, R. and Mosbach, K. (1981) Synthesis of substrate-selective polymers by host-guest polymerization. Makromol. Chem., 182, 687–692.

    Article  CAS  Google Scholar 

  • Damen, J. and Neckers, D.C. (1980) Memory of synthesized vinyl polymers for their origins. J. Org. Chem., 45, 1382–1387.

    Article  CAS  Google Scholar 

  • Dhal, P.K. and Arnold, F.H. (1991) Template-mediated synthesis of metal-complexing polymers for molecular recognition. J. Amer. Chem. Soc., 113, 7417–7418.

    Article  CAS  Google Scholar 

  • Ehrlich, P. (1909) Über den jetzigen Stand der Chemotherapie. Chem. Ber., 42, 17–47.

    Article  CAS  Google Scholar 

  • Fischer, L., Müller, R., Ekberg, B. and Mosbach, K. (1991a) Direct enantioseparation of β-adrenergic blockers using a chiral stationary phase prepared by molecular imprinting. J. Amer. Chem. Soc., 113, 9358–9360.

    Article  CAS  Google Scholar 

  • Fischer, L., Müller, R., Ekberg, B. and Mosbach, K. (1991b) World Patent application PCT-SE 92/00751.

    Google Scholar 

  • Fujii, Y., Matsutani, K. and Kikuchi, K. (1985) Formation of a specific co-ordination cavity for a chiral amino acid by template synthesis of a polymer Schiff base cobalt(III) complex. J. Chem. Soc. Chem. Commun., 415–417.

    Google Scholar 

  • Glad, M., Norrlöw, O., Sellergren, B., Siegbahn, N. and Mosbach, K. (1985) Use of silane monomers for molecular imprinting and enzyme entrapment in polysiloxane-coated porous silica., J. Chromatog., 347, 11–23.

    Article  CAS  Google Scholar 

  • Glad, M., Kempe, M. and Mosbach, K. (1992) Selective affinity material, process for the preparation thereof, and the use thereof. World Patent application PCT/SE92/00610.

    Google Scholar 

  • Kaiser, R.E. (1960) Gaschromatographie, Geest and Portig, Leipzig.

    Google Scholar 

  • Kempe, M. and Mosbach, K. (1991) Binding studies on substrate- and enantio-selective molecularly imprinted polymers. Anal. Lett., 24, 1137–1145.

    Article  CAS  Google Scholar 

  • Kempe, M., Fischer, L. and Mosbach, K. (1993) Chiral separation using molecularly imprinted heteroaromatic polymers. J. Mol. Recog., 6, 25–29.

    Article  CAS  Google Scholar 

  • Leonhardt, A. and Mosbach, K. (1987) Enzyme-mimicking polymers exhibiting specific substrate binding and catalytic functions. Reactive Polymers, 6, 285–290.

    CAS  Google Scholar 

  • McFadden, Jr., E.R. (ed.) (1985) Update on methylxanthine therapy. Amer. J. Med., 79 (6A), 1–78.

    Article  PubMed  Google Scholar 

  • Norrlöw, O., Glad, M. and Mosbach, K. (1984) Acrylic polymer preparations containing recognition sites obtained by imprinting with substrates. J. Chromatog., 299, 29–41.

    Article  Google Scholar 

  • Oellerich, M. (1980) Enzyme immunoassays in clinical chemistry; Present status and trends. J. Clin. Chem. Clin. Biochem., 18, 197–208.

    PubMed  CAS  Google Scholar 

  • O’Shannessy, D.J., Ekberg, B. and Mosbach, K. (1989a) Molecular imprinting of amino acid derivatives at low temperature (0°C) using photolytic homolysis of azobisnitriles. Anal. Biochem., 177, 144–149.

    Article  PubMed  Google Scholar 

  • O’Shannessy, D.J., Ekberg, B. Andersson, L.I. and Mosbach, K. (1989b) Recent advances in the preparation and use of molecularly imprinted polymers for enartiomeric resolution of amino acid derivatives. J. Chromatog., 470, 391–399.

    Article  Google Scholar 

  • O’Shannessy, D.J., Andersson, L.I. and Mosbach, K. (1989c) Molecular recognition in synthetic polymers. Enantiomeric resolution of amide derivatives of amino acids on molecularly imprinted polymers. J. Mol. Recog., 2, 1–5.

    Article  Google Scholar 

  • Pauling, L. (1940) A theory of the structure and process of formation of antibodies. J. Amer. Chem. Soc., 62, 2643–2657.

    Article  CAS  Google Scholar 

  • Poncelet, S.M., Limet, J.N., Noel, J.P., Kayaert, M.C., Galanti, L. and Collet-Cassart, D. (1990) Immunoassay of theophylline by latex particle counting. J. Immunoassay, 11, 77–88.

    Article  PubMed  CAS  Google Scholar 

  • Ramström, O., Andersson, L.I. and Mosbach, K. (1993) Recognition sites incorporating both pyridinyl and carboxy functionalities prepared by molecular imprinting. J. Org. Chem., 58, 7562–7564.

    Article  Google Scholar 

  • Ramström, O., Nicholls, I.A., and Mosbach, K. (1994) Synthetic peptide receptor mimics: Highly stereoselective recognition in non-covalent molecularly imprinted polymers. Tetrahedron Asymmetry, 5, 649–656.

    Article  Google Scholar 

  • Rosatzin, T., Andersson, L.I., Simon, W. and Mosbach, K. (1991) Preparation of Ca2+ selective sorbents by molecular imprinting using polymerisable ionophores. J. Chem. Soc. Perkin. Trans., 2, 1261–1265.

    Google Scholar 

  • Sellergren, B. and Andersson, L. (1990) Molecular recognition in macroporous polymers prepared by a substrate analogue imprinting strategy. J. Org. Chem., 55, 3381–3383.

    Article  CAS  Google Scholar 

  • Sellergren, B., Ekberg, B. and Mosbach, K. (1985) Molecular imprinting of amino acid derivatives in macroporous polymers. Demonstration of substrate- and enantio-selectivity by chromatographic resolution of racemic mixtures of amino acid derivatives. J. Chromatog., 347, 1–10.

    Article  CAS  Google Scholar 

  • Sellergren, B., Lepistö, M. and Mosbach, K. (1988) Highly enantioselective and substrate-selective polymers obtained by molecular imprinting utilizing non-covalent interactions. NMR and chromatographic studies on the nature of recognition. J. Amer. Chem. Soc., 110, 5853–5860.

    Article  CAS  Google Scholar 

  • Shea, K.J. and Dougherty, T.K. (1986) Molecular recognition on synthetic amorphous surfaces. The influence of functional group positioning on the effectiveness of molecular recognition. J. Amer. Chem. Soc., 108, 1091–1093.

    Article  CAS  Google Scholar 

  • Shea, K.J. and Sasaki, D.Y. (1989) On the control of microenvironment shape of functionalized network polymers prepared by template polymerization. J. Amer. Chem. Soc., 111, 3442–3444.

    Article  CAS  Google Scholar 

  • Shea, K.J. and Saski, D.Y. (1991) An analysis of small-molecule binding to functionalized synthetic polymers by 13C CP/MAS NMR and FT-IR spectroscopy. J. Amer. Chem. Soc., 113, 4109–4120.

    Article  CAS  Google Scholar 

  • Shea, K.J., Thompson, E.A., Pandey, S.D. and Beauchamp, P.S. (1980) Template synthesis of macromolecules. Synthesis and chemistry of functionalized macroporous polydivinylbenzene. J. Amer. Chem. Soc., 102, 3149–3155.

    Article  CAS  Google Scholar 

  • Taylor, D.R. and Maher, K. (1992) Chiral separations by high-performance liquid chromatography. J. Chromatog. Sci., 30, 67–85.

    CAS  Google Scholar 

  • Vlatakis, G., Andersson, L.I., Müller, R. and Mosbach, K. (1993) Drug assay using antibody mimics made by molecular imprinting. Nature, 361, 645–647.

    Article  PubMed  CAS  Google Scholar 

  • Wulff, G. (1986) Molecular recognition in polymers prepared by imprinting with templates. American Chemical Society Symposium Series, no. 308, pp. 186–230.

    Google Scholar 

  • Wulff, G. and Haarer, J. (1991) Enzyme-analogue built polymers. The preparation of defined chiral cavities for the racemic resolution of free sugars. Makromol. Chem., 192, 1329–1338.

    Article  CAS  Google Scholar 

  • Wulff, G. and Kirstein, G. (1990) Measuring the optical activity of chiral imprints in insoluble highly cross-linked polymers. Angew. Chem. Int. Edn. Eng., 29, 684–686.

    Article  Google Scholar 

  • Wulff, G. and Minarik, M. (1986) Pronounced effect of temperature on racemic resolution using template-imprinted polymeric sorbents. J. High Res. Chromatog., Chromatog. Commun., 9, 607–608.

    Article  CAS  Google Scholar 

  • Wulff, G. and Minarik, M. (1990) Template imprinted polymers for HPLC separation of race-mates. J. Liq. Chromatog., 13, 2987–2300.

    Article  CAS  Google Scholar 

  • Wulff, G. and Schauhoff, S. (1991) Racemic resolution of free sugars with macroporous polymers prepared by molecular imprinting. Selectivity dependence on the arrangement of functional groups versus spatial requirements. J Org. Chem., 56, 395–400.

    Article  CAS  Google Scholar 

  • Wulff, G. and Poll, H.-G. (1987) Enzyme-analogue built polymers. Influence of the structure of the binding sites on the selectivity for racemic resolution. Makromol. Chem., 188, 741–748.

    Article  CAS  Google Scholar 

  • Wulff, G. and Vietmeier, J. (1989) Enzyme-analogue built polymers. Synthesis of macroporous copolymers from α-amino acid based vinyl compounds. Makromol. Chem., 190, 1717–1726.

    Article  CAS  Google Scholar 

  • Wulff, G., Poll, H.-G. and Minarik, M. (1986a) Enzyme-analogue built polymers. Racemic resolution on polymers containing chiral cavities. J. Liq. Chromatog., 9, 385–405.

    Article  CAS  Google Scholar 

  • Wulff, G., Heide, B. and Helfmeier, G. (1986b) Molecular recognition through the exact placement of functional groups on rigid matrices via a template approach. J. Amer. Chem. Soc., 108, 1089–1091.

    Article  CAS  Google Scholar 

  • Wulff, G., Vietmeier, J. and Poll, H.-G. (1987a) Enzyme-analogue built polymers. Influence of the nature of the crosslinking agent on the performance of imprinted polymers in racemic resolution. Makromol Chem., 188, 731–740.

    Article  CAS  Google Scholar 

  • Wulff, G., Heide, B. and Helfmeier, G. (1987b) Enzyme-analogue built polymers. On the distance accuracy of functional groups in polymers and silicas introduced by a template approach. Reactive Polymers, 6, 299–310.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Andersson, L.I., Nicholls, I.A., Mosbach, K.H. (1994). Molecular imprinting—a versatile technique for the preparation of separation materials of predetermined selectivity. In: Street, G. (eds) Highly Selective Separations in Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1322-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1322-9_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4576-6

  • Online ISBN: 978-94-011-1322-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics