Skip to main content

Theoretical and experimental research into the strength and deformation of fibrous metal composite materials

  • Chapter
Metal Matrix Composites

Part of the book series: Soviet Advanced Composites Technology Series ((SACTS,volume 3))

Abstract

This chapter presents a summary of existing and new methods for the calculation of the mechanical properties of metal and MCPC composite materials, together with their relationships to one another and to strength, volume filling and other factors. Experimental researches shows the influence of these factors on resulting material strength.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zweben, C., Tensile failure of fibre composites. AJAA, 6 (1968) 2325.

    Google Scholar 

  2. Freidental, A.M., Statistical approach to brittle failure. In Failures, Vol. 2. Mir, Moscow, 1975, pp. 616–45.

    Google Scholar 

  3. Rozen, B., Mechanics of Composite Materials Strengthening Fibre Composites. Mir, Moscow, 1967, pp. 54–97.

    Google Scholar 

  4. Bolotin, V.V., Statistical theory of accumulation of defects in composites and scale effect of reliability. Mechanics of Polymers, 2 (1976) 247–55.

    Google Scholar 

  5. Bolotin, V.V., Mechanics of composite failure. In Composite Materials. Mashinostroyenie, Moscow, 1990, pp. 158–88.

    Google Scholar 

  6. Ovchinsky, A.S., Processes of Composite Failure. Micro and Macro Mechanisms and Computer Simulation. Nauka, Moscow, 1988, p. 278.

    Google Scholar 

  7. Zweben, C. and Rozen, B. W. A statistical theory of material strength with application to composite materials. Journal of the Mechanics and Physics of Solids, 18 (1970) 189–206.

    Article  Google Scholar 

  8. Tamuzh, V.P., Volume failure of unidirectional composite materials. Mechanics of Composite Materials, 2 (1979) 260–7.

    Google Scholar 

  9. Metcalf, A.Y. and Clyne, M.J., Surface effects of mechanical properties of composite materials under tensile stress. Composite materials interface. In Metal Composites, Vol. 1. Mir, Moscow, 1978, pp. 137–84.

    Google Scholar 

  10. Shorshorov, M.H., Physicochemical interaction of composite components. In Composites. Nauka, Moscow, 1981, pp. 11–18.

    Google Scholar 

  11. Shorshorov, M.H., Kolesnichenko, N.A., Yusupov, R.S. and Ustinov, L.M., The influence of link strength between fibre and matrix on the character of failure of a composite reinforced by brittle fibres of boron with a metal matrix of aluminium alloys. Physics and Chemistry of Material Treatment, 4 (1978) 117–23.

    Google Scholar 

  12. Shorshorov, M.H., Kolesnichenko, V.A., Kocheshkov, I.V. and Ovchinsky, A.S., Influence of physicochemical interaction of components on strength and failure mechanisms of boron—aluminium. Physics and Chemistry of Material Treatment, 4 (1986) 115–22.

    Google Scholar 

  13. Shorshorov, M.H., Gukasyan, L.Ye. and Ustinov, L.M., Strength of boron—aluminium with imperfect interface. Physics and Chemistry of Material Treatment, 1 (1980) 128–33.

    Google Scholar 

  14. Mileyko, S.T., Sorokin, N.M. and Tsirlin, A.M., Fracture development in boron—aluminium composites. Mechanics of Polymer Materials, 5 (1973) 840–6.

    Google Scholar 

  15. Kelly, A., High-Strength Materials. Mir, Moscow, 1976, p. 260.

    Google Scholar 

  16. Marukhin, A.P. and Voribey, V.V., Unidirectional composite strength under tensile stress. Applied Mechanics, 21 (1985) 78–84.

    Google Scholar 

  17. Shorshorov, M.H., Kolesnichenko, V.A. and Kocheshkov, I.V., Evaluation of the degree of physicochemical interaction between components of a fibre composite material of the Al—B system. Science of Metals and Heat-Treatment of Metals, 8 (1984) 11–15.

    Google Scholar 

  18. Guz, A.N. and Cherevko, M.A., Failure mechanics of a fibre composite material with elasto-plastic matrix under tensile stress. Proceedings of the Academy of Sciences of the USSR, 256 (1981) 860–9.

    Google Scholar 

  19. Guz, A.N., Cherevko, M.A., Margolin, G.G. and Romashko, I.M. Mechanics of Composite Materials, 2 (1986) 226–30.

    Google Scholar 

  20. Cherevko, M.A., Compressional strength of a unidirectional composite along reinforcement with hexagonal fibre laying in an elasto-plastic matrix. Applied Mechanics, 22 (1986) 116–18.

    Google Scholar 

  21. Dymkov, I.A., Fibre metal-composite failure under compression along fibres. Izvestia VUZov, 12 (1985) 13–16.

    Google Scholar 

  22. Marukhin, A.P. and Vorobey, V.V., Deformation of metal composite cores. Applied Mechanics, 22 (1986) 76–83.

    Google Scholar 

  23. Cooper, G.A., Micromechanical aspects of failure. In Composites. Failure and Fatigue. Mir, Moscow, 1978, pp. 440–75.

    Google Scholar 

  24. Dow, N.F., Rosen, B.W. and Hashin, Z., NASA Report, NASA-CR-492 (1966).

    Google Scholar 

  25. Yerasov, V.S., Pirogov, Ye.N. et al., Temperature influence on mechanical characteristics of boron fibres. Mechanics of Composite Materials., 2 (1982) 195–9.

    Google Scholar 

  26. Rosen, B.U. and Dow, N.F., Mechanics of fibre composite failure and desturction. In Non-Metal and Composite Materials Failure, Vol. 7, Part I. Mir, Moscow, 1976 pp. 300–66.

    Google Scholar 

  27. Bazhenov, S.Z., Koziy, V.V., Berlin, A.A., Coopermann, A.M., Zelensky, E.S. and Lebedeva, O.V., Destruction of unidirectional reinforced plastics under transverse compression. Proceedings of the Academy of Sciences of the USSR, 303 (1988) 1155–8.

    Google Scholar 

  28. Perov, Yu.Yu., Lokshin, V.A. and Lyapina, N.V., The influence of technology on carboplastic strength under bending. Mechanics of Composite Materials, 4 (1988) 660–4.

    Google Scholar 

  29. Hencock, J.R., Fatigue of composites with metal matrix. In Composite Materials, Vol. 5. Mashinostroyenie Moscow, 1978, pp. 394–439.

    Google Scholar 

  30. Mileyko, S.T. and Antichenkov, V.M., Features of fatigue failure of fibre composites with metal matrix. Mechanics of Composite Materials, 3 (1980) 409–17.

    Google Scholar 

  31. Panasyuk, V.V., Andreykiv, A.Ye. and Kovchik, S.Ye., Methods of Evaluation of Fracture Resistance of Construction Materials. Naukova Dumka, Kiev, 1977.

    Google Scholar 

  32. Gross, I.E., Rawley, S. and Brown, W.F., NASA and Technical Note D-2395 (August 1964), pp. 107–12.

    Google Scholar 

  33. Tsai, S.V. and Adzi, V.D., Strength of laminated component materials. Rocket Engineering and Astronautics, 2 (1966) 142–7.

    Google Scholar 

  34. Vasilyev, V.V. and Yelpatyevsky, A.N., Features of the deformation of cylinder cores of unidirectional fibreglass bands under internal pressure. Mechanics of Polymeric Materials, 5 (1967) 915–20.

    Google Scholar 

  35. Vasilyev, V.V., Dudchenko, A.A. and Yelpatyevsky, A.N., Features of the deformation of orthotropic fibreglass under tension. Mechanics of Polymeric Materials, 1 (1970) 144–7.

    Google Scholar 

  36. Tsai, S. and Khan, H., Analysis of composite failure. In Non-Elastic Properties of Composite Materials. Mir, Moscow, 1978, pp. 104–39.

    Google Scholar 

  37. Obraztsov, I.F., Vasilyev, V.V. and Bunakov, V.A., Optimal Reinforcement of Rotating Cores of Composite Materials. Mashinostroyenie, Moscow, 1977, p. 144.

    Google Scholar 

  38. Kuznetsov, S.F. and Partsevsky, V.V., Mechanisms of deformation and failure of laminated multidirectional composite materials. Mechanics of Composite Materials, 6 (1981) 1006–11.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Polovnikov, S.P., Marukhin, A.P. (1995). Theoretical and experimental research into the strength and deformation of fibrous metal composite materials. In: Fridlyander, J.N. (eds) Metal Matrix Composites. Soviet Advanced Composites Technology Series, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1266-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1266-6_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4552-0

  • Online ISBN: 978-94-011-1266-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics