Skip to main content

Familial Clustering of Coronary Heart Disease: A Review of its Significance and Role as a Risk Factor for the Disease

  • Chapter
Genetic factors in coronary heart disease

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 156))

Abstract

Atherosclerosis is a disease of the walls of the aorta and the large arteries. Although there is evidence that this disease begins early in life, clinical symptoms of atherosclerosis do not usually occur until over half of the lumen becomes occluded by plaque, typically in the fifth and sixth decades1. Most epidemiological and genetic observations of atherosclerotic disease have used clinical disease manifestations as the end points. Coronary heart disease (CHD), because it is a significant contributor to morbidity and mortality in many countries and is the leading cause of death in North America and most countries of central and western Europe, has received the greatest attention2. The study of familial clustering of CHD as a risk factor for the disease gained its popularity, not due to the simple fact that aggregation of CHD indeed occurs in families, but, in the way this clustering has been interpreted. MacMahon3 has stated: ‘Every disease of which I can conceive and, for that matter, every human trait — has been shown to occur more frequently in the siblings of affected individuals than in the population at large, or can, on theoretical grounds, be expected to show this feature if sufficient and appropriate data were collected.’ The burgeoning interest in familial aggregation of CHD relates, first, to whether findings support the view that this aggregation may well be explained solely by genetic factors, or also by environmental factors which are communicated rather than inherited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McGill HC Jr. Atherosclerosis: Problems in endpoints for genetic analysis. In: Sing CF, Skolnick M, eds. Genetic analysis of common diseases: Applications to predictive factors in coronary disease. New York: Alan R Liss Inc; 1979:27–49.

    Google Scholar 

  2. Higgins MW, Luepker RV, eds. Trends and determinants of coronary heart disease mortality: International comparisons. Int J Epidemiol. 1989;S1–S232.

    Google Scholar 

  3. MacMahon B. Epidemiology approaches to family resemblance. In: Morton NE, Chung CS, eds. Genetic epidemiology. New York: Academic Press; 1978:3–11.

    Google Scholar 

  4. Gertler MM, White PD. Coronary heart disease in young adults: A multidisciplinary study. Cambridge, Massachusetts: Harvard University Press; 1954.

    Google Scholar 

  5. Thomas CB, Cohen BH. The familial occurrence of hypertension and coronary artery disease with observations concerning obesity and diabetes. Ann Intern Med. 1955;42:90–127.

    Article  PubMed  CAS  Google Scholar 

  6. Rose G. Familial patterns in ischaemic heart disease. Br J Prev Soc Med. 1964;18:75–80.

    PubMed  CAS  Google Scholar 

  7. Shanoff HM, Little A, Murphy EA, et al. Studies of the male survivors of myocardial infarction due to ‘essential’ atherosclerosis. Can Med Assoc J. 1961;84:519–30.

    PubMed  CAS  Google Scholar 

  8. Slack J, Evans KA. The increased risk of death from ischaemic heart disease in first-degree relatives of 121 men and 96 women with ischaemic heart disease. J Med Genet. 1966;3:239–57.

    Article  PubMed  CAS  Google Scholar 

  9. Phillips RL, Lilienfeld AM, Diamond EA, et al. Frequency of coronary heart disease and cerebrovascular accidents in parents and sons of coronary heart disease index cases and controls. Am J Epidemiol. 1974;100:87–100.

    PubMed  CAS  Google Scholar 

  10. Rissanen AM. Familial occurrence of coronary heart disease: Effect of age at diagnosis. Am J Cardiol. 1979;44:60–6.

    Article  PubMed  CAS  Google Scholar 

  11. Falconer DS. The inheritance of liability to certain diseases estimated from the incidence among relatives. Ann Hum Genet. 1965;29:51–71.

    Article  Google Scholar 

  12. Why does coronary heart disease run in families? Br Med J. 1977;2:415–16.

    Google Scholar 

  13. Theorell T, Viqborg A, Kallner A, Dahlen G, Walinder O. A comparison between Finnish immigrants and native Swedes in the Greater Stockholm region: Social and medical risk indicators of ischemic heart disease. Scand J Soc Med. 1980;8:105–15.

    PubMed  CAS  Google Scholar 

  14. Hamsten A, de Faire U. Risk factors for coronary artery disease in families of young men with myocardial infarction. Am J Cardiol. 1987;59:14–19.

    Article  PubMed  CAS  Google Scholar 

  15. Friedlander Y, Lev-Merom D, Kark JD. Family history as predictor of incidence of acute myocardial infarction: The Jerusalem Lipid Research Clinic. Presented at the 2nd International Conference on Preventive Cardiology and the 29th Annual Meeting of the AHA Council on Epidemiology, Washington, DC, USA, June 18–22, 1989.

    Google Scholar 

  16. Slater PE, Friedlander Y, Baras M, Harlap S, Halfon S-T, Kaufmann NA, Eisenberg S, Davies AM, Stein Y. The Jerusalem Lipid Research Clinic: Sampling, response and selected methodological issues. Isr J Med Sci. 1982;18:1106–12.

    PubMed  CAS  Google Scholar 

  17. ten Kate LP, Boman H, Daiger SP, Motulsky AG. Familial aggregation of coronary heart disease and its relation to known genetic risk factors. Am J Cardiol. 1982;50:945–53.

    Article  PubMed  Google Scholar 

  18. Nora JJ, Lortscher RH, Spangler RD, Nora AH, Kimberling WJ. Genetic-epidemiologic study of early-onset ischemic heart disease. Circulation. 1980;61:503–8.

    Article  PubMed  CAS  Google Scholar 

  19. Anderson AJ, Loeffler RF, Barboriak JJ, Rimm AA. Occlusive coronary artery disease and parental history of myocardial infarction. Prev Med. 1979;8:419–28.

    Article  PubMed  CAS  Google Scholar 

  20. Hamby RI. Hereditary aspects of coronary artery disease. Am Heart J. 1981;101:639–49.

    Article  PubMed  CAS  Google Scholar 

  21. Chesebro JH, Fuster V, Elveback LR, Frye RL. Strong family history and cigarette smoking as risk factors of coronary artery disease in young adults. Br Heart J. 1982;47:78–83.

    Article  PubMed  CAS  Google Scholar 

  22. Shea S, Ottman R, Gabrieli C, Stein Z, Nichols A. Family history as an independent risk factor for coronary artery disease. J Am Coll Cardiol. 1984;4:793–801.

    Article  PubMed  CAS  Google Scholar 

  23. Coronary Risk Handbook. Dallas, TX: American Heart Association; 1973.

    Google Scholar 

  24. de Faire U. Ischaemic heart disease in death discordant twins. Acta Med Scand (Suppl). 1974;568:65–109.

    Google Scholar 

  25. Liljefors I. Coronary heart disease in male twins. Acta Med Scand (Suppl). 1970;511:9–87.

    Google Scholar 

  26. Rissanen AM, Nikkila EA. Coronary artery disease and its risk factors in families of young men with angina pectoris and in controls. Br Heart J. 1977;39:875–83.

    Article  PubMed  CAS  Google Scholar 

  27. Sholtz RI, Rosenman RH, Brand RJ. The relationship of reported parental history to the incidence of coronary heart disease in the Western Collaborative Group Study. Am J Epidemiol. 1975;102:350–6.

    PubMed  CAS  Google Scholar 

  28. Colditz GA, Rimm EB, Giovannucci E, Stampfer MJ, Rosner B, Willett WC. A prospective study of parental history of myocardial infarction and coronary artery disease in men. Am J Cardiol. 1991;67:933–8.

    Article  PubMed  CAS  Google Scholar 

  29. Barrett-Connor E, Khaw K. Family history of heart attack as an independent predictor of death due to cardiovascular disease. Circulation. 1984;69:1065–9.

    Article  PubMed  CAS  Google Scholar 

  30. Colditz GA, Stampfer MJ, Willett WC, Rosner B, Speizer FE, Hennekens CH. A prospective study of parental history of myocardial infarction and coronary heart disease in women. Am J Epidemiol. 1986;123:48–58.

    PubMed  CAS  Google Scholar 

  31. Schildkraut JM, Myers RH, Cupples LA, Kiely DK, Kannel WB. Coronary risk associated with age and sex of parental heart disease in the Framingham Study. Am J Cardiol. 1989;64:555–9.

    Article  PubMed  CAS  Google Scholar 

  32. Phillips AN, Shaper AG, Pocock SJ, Walker M. Parental death from heart disease and the risk of heart attack. Eur Heart J. 1988;9:243–51.

    PubMed  CAS  Google Scholar 

  33. Hopkins PN, Williams RR, Kuida H, Stults BM, Hunt SC, Barlow GK, Owen Ash K. Family history as an independent risk factor for incident coronary artery disease in a high-risk cohort in Utah. Am J Cardiol. 1988;62:703–7.

    Article  PubMed  CAS  Google Scholar 

  34. Hopkins PN, Williams RR, Hunt SC. Magnified risks from cigarette smoking for coronary prone families in Utah. West J Med. 1984;141:196–202.

    PubMed  CAS  Google Scholar 

  35. Williams RR, Skolnick M, Carmelli D, Maness AT, Hunt SC, Hasstedt S, Reiber GE, Jones RK. Utah pedigree studies: Design and preliminary data for premature male CHD deaths. In: Sing CF, Skolnick MH, eds. Genetic analysis of common disease; Applications to predictive factors in coronary disease. New York: Alan R. Liss; 1979:711–729.

    Google Scholar 

  36. Heller RF, Kelson MC. Family history in low risk’ men with coronary heart disease. J Epidemiol Commun Health. 1983;37:29–31.

    Article  CAS  Google Scholar 

  37. Myers RH, Kiely DK, Cupples LA, Kannel WB. Parental history is an independent risk factor for coronary artery disease: The Framingham Study. Am Heart J. 1991;120:963–9.

    Article  Google Scholar 

  38. Hoefler G, Harnoncourt F, Paschke E, Mirtl W, Pfeiffer KH, Kostner GM. Lipoprotein Lp(a): A risk factor for myocardial infarction. Arteriosclerosis. 1988;8:398–401.

    Article  PubMed  CAS  Google Scholar 

  39. Heller RF, Miller NE, Wheeler MJ, Kind PRN. Coronary heart disease in ‘low risk’ men. Atherosclerosis. 1983;49:187–93.

    Article  PubMed  CAS  Google Scholar 

  40. Khaw K-T, Barrett-Connor E. Family history of heart attack: A modifiable risk factor? Circulation. 1986;74:239–44.

    Article  PubMed  CAS  Google Scholar 

  41. Cederlof R, Friberg L, Hurbec Z. Cardiovascular and respiratory systems in relation to tobacco smoking: A study on American twins. Arch Environ Health. 1969;18:934–40.

    PubMed  CAS  Google Scholar 

  42. Hauge M, Harvald B, Reid DD. A twin study of the influence of smoking on morbidity and mortality. Acta Genet Med Gemellol. 1970;19:335–6.

    PubMed  CAS  Google Scholar 

  43. Friberg L, Cederlof R, Lorich U, Lundman T, de Faire U. Mortality in twins in Telation to smoking habits and alcohol problems. Arch Environ Health. 1973;27:294–304.

    Article  PubMed  CAS  Google Scholar 

  44. Friedlander Y, Kark JD, Stein Y. Family history of myocardial infarction as an independent risk factor for coronary heart disease. Br Heart J. 1985;53:382–7.

    Article  PubMed  CAS  Google Scholar 

  45. Simons LA, Friedlander Y, Simons J, Kark JD. Familial aggregation of coronary heart disease: partial mediation by high density lipoproteins? Atherosclerosis. 1988;69:139–44.

    Article  PubMed  CAS  Google Scholar 

  46. Kondo I, Berg K, Drayna D, Lawn R. DNA polymorphism at the locus for human cholesteryl ester transfer protein (CETP) is associated with high density lipoprotein cholesterol and apolipoprotein levels. Clin Genet. 1989;35:49–56.

    Article  PubMed  CAS  Google Scholar 

  47. Kaprio J, Ferrell RE, Kottke BA, Sing CF. Smoking and reverse cholesterol transport: Evidence for gene-environment interaction. Clin Genet. 1989;36:266–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Friedlander, Y. (1994). Familial Clustering of Coronary Heart Disease: A Review of its Significance and Role as a Risk Factor for the Disease. In: Goldbourt, U., de Faire, U., Berg, K. (eds) Genetic factors in coronary heart disease. Developments in Cardiovascular Medicine, vol 156. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1130-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1130-0_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4494-3

  • Online ISBN: 978-94-011-1130-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics