Skip to main content

Normal Polymorphism at the Low Density Lipoprotein Receptor (LDLR) Locus: Effect on Cholesterol Levels and Interaction with Apolipoprotein E (apoE) Genes

  • Chapter
Genetic factors in coronary heart disease

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 156))

  • 172 Accesses

Abstract

Family, twin and population studies have uncovered significant effects of genes on levels of risk factors or protective factors with respect to coronary heart disease (CHD)1,2 and it is an important task to uncover the individual genes contributing to risk-factor heritability. Current attempts to identify such genes follow the ‘candidate gene’ approach15. Among the candidate genes with respect to coronary heart disease (CHD), the apolipoprotein genes have been the focus of much research. Candidate gene studies conducted at the level of LDL allotypes or apolipoprotein E isoforms before DNA technology became available uncovered effects of normal genes at the apolipoprotein B (apoB) and apolipoprotein E (apoE) loci on lipid levels. With the advent of DNA technology, the potential for studies employing the candidate gene approach was dramatically expanded and numerous studies on restriction fragment length polymorphisms (RFLPs) at apolipoprotein loci and risk factor levels or overt disease have been reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berg K. Atherosclerosis and coronary artery disease. In: Nora JJ, Berg K, Nora AH, eds. Cardiovascular diseases. Genetics, epidemiology and prevention. New York: Oxford University Press; 1991:3–40.

    Google Scholar 

  2. Berg K. Genetic and environmental factors in the development of cardiovascular disease. In: Galteau M-M, Siest G, Henry J, eds. Biologie prospective. Comptes rendus du 8e Colloque de Pont-a-Mousson. Paris: John Libbey Eurotext; 1993:471–80.

    Google Scholar 

  3. Lusis AJ. Genetic factors affecting blood lipoproteins. The candidate gene approach. J Lipid Res. 1988;29:397–429.

    PubMed  CAS  Google Scholar 

  4. Berg K. Level genes and variability genes in the etiology of hyperlipidemia and atherosclerosis. In: Berg K, Retterstøl N, Refsum S, eds. From phenotype to gene in common disorders. Copenhagen: Munksgaard; 1990:77–91.

    Google Scholar 

  5. Berg K. Lp(a) lipoprotein. An important genetic risk factor for atherosclerosis. In: Sparkes RS, ed. Monographs in human genetics. Basel: Karger; 1991:189–207.

    Google Scholar 

  6. Müller C. Angina pectoris in hereditary xanthomatosis. Arch Intern Med. 1939;64:675–700.

    Article  Google Scholar 

  7. Goldstein JL, Schrott HG, Hazzard WR, Bierman EL, Motulsky AG. Hyperlipidemia in coronary heart disease. II. Genetic analyses of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest. 1973;52:1544–68.

    Article  PubMed  CAS  Google Scholar 

  8. Goldstein JL, Brown MS. Familial hypercholesterolemia. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The metabolic basis of inherited disease, 6th edn. New York: McGraw-Hill; 1989:1215–50.

    Google Scholar 

  9. Magnus P, Maartmann-Moe K, Golden W, Nance WE, Berg K. Genetics of the low density lipoprotein receptor: II. Genetic control of variation in cell membrane low density lipoprotein receptor activity in cultured fibroblasts. Clin Genet. 1981;20:104–12.

    Article  PubMed  CAS  Google Scholar 

  10. Maartmann-Moe K, Magnus P, Golden W, Berg K. Genetics of the low density lipoprotein receptor: III. Evidence for multiple normal alleles at the low density lipoprotein receptor locus. Clin Genet. 1981;20:113–29.

    Article  PubMed  CAS  Google Scholar 

  11. Hobbs HH, Lehrman MA, Yamamoto T, Rüssel DW. Polymorphism and evolution of Alu sequences in the human low density lipoprotein receptor gene. Proc Natl Acad Sci USA. 1985;82:7651–5.

    Article  PubMed  CAS  Google Scholar 

  12. Pedersen JC, Berg K. Normal DNA polymorphism at the low density lipoprotein receptor (LDLR) locus associated with serum cholesterol level. Clin Genet. 1988;34:306–12.

    Article  PubMed  CAS  Google Scholar 

  13. Berg K. Twin studies of coronary heart disease and its risk factors. Acta Genet Med Gemellol. 1984;33:349–61.

    PubMed  CAS  Google Scholar 

  14. Yamamoto T, Davis CG, Brown MS, et al. The human LDL receptor, a cysteine-rich protein with multiple alu sequences in its mRNA. Cell. 1984;39:27–36.

    Article  PubMed  CAS  Google Scholar 

  15. Pedersen JC, Berg K. Gene-gene interaction between the low density lipoprotein receptor (LDLR) and apolipoprotein E (apoE) affects lipid levels. Clin Genet. 1990;38:287–94.

    PubMed  CAS  Google Scholar 

  16. Humphries S, Coviello DA, Maturzo P, Balestreri R, Orecchini G, Bertolini S. Variation in the low density lipoprotein receptor gene is associated with differences in plasma low density lipoprotein cholesterol levels in young and old normal individuals from Italy. Arteriosclerosis Thromb. 1991;11:509–16.

    Article  CAS  Google Scholar 

  17. Schuster H, Humphries S, Rauh G, et al. Association of DNA-haplotypes in the human LDL-receptor gene with normal serum cholesterol levels. Clin Genet. 1990;38:401–9.

    Article  PubMed  CAS  Google Scholar 

  18. Poledne R, Piza Z, Berg K. Normal genetic variation at the low density lipoprotein receptor (LDLR) locus influences cholesterol levels in children. Clin Genet. 1993;43:122–6.

    Article  PubMed  CAS  Google Scholar 

  19. Hickson JE, Kammerer CM, Cox LA, Mott GE. Identification of LDL receptor gene marker associated with altered levels of LDL cholesterol and apolipoprotein B in Baboons. Arteriosclerosis. 1989;9:829–35.

    Article  Google Scholar 

  20. Schneider WJ, Kovanen PT, Brown MS, et al. Familial dysbetalipoproteinemia. Abnormal binding of mutant apolipoprotein E to low density lipoprotein receptors or human fibroblasts and membranes from liver and adrenals of rats, rabbits and cows. J Clin Invest. 1981;68:1075–85.

    Article  PubMed  CAS  Google Scholar 

  21. Rall SC Jr, Weisgraber KH, Innerarity T, Mahley RW. Structural basis for receptor binding heterogeneity of apolipoprotein E from type III hyperlipoproteinemic subjects. Proc Natl Acad Sci USA. 1982;79:4969–700.

    Article  Google Scholar 

  22. Davignon J, Gregg RE, Sing CF. Apolipoprotein E polymorphism and atherosclerosis. Arteriosclerosis. 1988;8:1–21.

    Article  PubMed  CAS  Google Scholar 

  23. Pedersen JC, Berg K. Interaction between low density lipoprotein receptor (LDLR) and apolipoprotein E (apoE) alleles contributes to normal variation in lipid levels. Clin Genet. 1989;35:331–7.

    Article  PubMed  CAS  Google Scholar 

  24. Robertson DW. Inheritance in barley. Genetics. 1933;18:148–58.

    PubMed  CAS  Google Scholar 

  25. Lundqvist U, Abebe B, Lundqvist A. Gene interaction of induced intermedium mutations of two-row barley. Hereditas. 1989;111:34–47.

    Google Scholar 

  26. Barnes PT, Holland B, Courrages V. Genotype-by-environment and epistatic interactions in Drosophila melanogaster: The effects of Gpdh allozymes, genetic background and rearing temperature on larval development time and viability. Genetics. 1989;122:859–68.

    PubMed  CAS  Google Scholar 

  27. Levitan M, Montague A. Textbook of human genetics. London: Oxford University Press; 1971:596–641.

    Google Scholar 

  28. Schlager G, Chao CS. The role of dominance and epistasis in the genetic control of blood pressure in rodent models of hypertension. Clin Exp Hyper Theory Pract. 1991;A13(5):947–53.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pedersen, J.C., Berg, K. (1994). Normal Polymorphism at the Low Density Lipoprotein Receptor (LDLR) Locus: Effect on Cholesterol Levels and Interaction with Apolipoprotein E (apoE) Genes. In: Goldbourt, U., de Faire, U., Berg, K. (eds) Genetic factors in coronary heart disease. Developments in Cardiovascular Medicine, vol 156. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1130-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1130-0_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4494-3

  • Online ISBN: 978-94-011-1130-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics