Skip to main content

Synthesis and Characterization of Carbon Nanotubes

  • Chapter
Physics and Chemistry of the Fullerenes

Part of the book series: NATO ASI Series ((ASIC,volume 443))

Abstract

The large scale synthesis of carbon nanotubes using a carbon arc under inert atmosphere has opened the way for further understanding of their growth mechanism and their properties. In order to understand the high yields at which the nanotubes are formed, the structure of the deposit containing the nanotubes has been analyzed in detail by SEM, AFM and STM. The structure has a fractal like growth pattern in which one of the key units of growth appears to be a micro-bundle of nanotubes. Physical properties such as Raman and capillarity reveal the unique features of nanotubes. Nanotubes, as nanoscale test-tubes, might also offer the possibility of doing interesting nanoscience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Bacon, J. Appl. Phys. 31, 283 (1960).

    Article  ADS  Google Scholar 

  2. M.S. Dresselhaus, G. Dresselhaus, K. Sugihara, I.L. Spain and H.A. Goldberg Graphite Fibers and Filaments, Springer Series in Material Science, Vol. 5 Springer, Berlin (1988).

    Google Scholar 

  3. A. Oberlin, M. Endo and T. Koyama, J. Cryst. Growth 32, 335 (1976).

    Article  ADS  Google Scholar 

  4. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl and R.E. Smalley, Nature 318, 162 (1985).

    Article  ADS  Google Scholar 

  5. W. Kratschmer, L.D. Lamb, K. Fostiropoulos and D.R. Huffman Nature 347, 354 (1990).

    Article  ADS  Google Scholar 

  6. S. Iijima, Nature 354, 56 (1991).

    Article  ADS  Google Scholar 

  7. T.W. Ebbesen and P.M. Ajayan, Nature 358, 220 (1992).

    Article  ADS  Google Scholar 

  8. N. Hamada, S. Sawada and A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992).

    Article  ADS  Google Scholar 

  9. J.W. Mintmire, B.I. Dunlap and C.T. White, Phys. Rev. Lett. 68, 631 (1992).

    Article  ADS  Google Scholar 

  10. R. Saito, M. Fujita, G. Dresselhaus and M.S. Dresselhaus Appl. Phys. Lett. 60, 469 (1992).

    Article  ADS  Google Scholar 

  11. K. Tanaka, K. Okahara, M. Okada and T. Yamabe, Chem. Phys. Lett. 191, 469 (1992).

    Article  ADS  Google Scholar 

  12. H. Hiura, T.W. Ebbesen, K. Tanigaki and H. Takahashi Chem. Phys. Lett. 202, 509 (1992)

    Article  ADS  Google Scholar 

  13. P.M. Ajayan and S. Iijima, Nature 361, 333 (1993)

    Article  ADS  Google Scholar 

  14. P.M. Ajayan, T.W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki and H. Hiura, Nature 362, 522 (1993).

    Article  ADS  Google Scholar 

  15. P.M. Ajayan, T.W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki and H. Hiura, Nature 362, 522 (1993).

    Article  ADS  Google Scholar 

  16. M.J. Gallagher, D. Chen, B.P. Jacobsen, D. Sand, L.D. Lamb, F.A. Tinker, J. Jiao, D.R. Huffman, S. Seraphin and D. Zhou, Surface Science Lett. 281, L335 (1993).

    Article  Google Scholar 

  17. R.S. Ruoff, D.C. Lorents, B. Chan, R. Malhotra and S. Subramoney Science 259, 346 (1993).

    Google Scholar 

  18. R.S. Ruoff, D.C. Lorents, B. Chan, R. Malhotra and S. Subramoney Science 259, 346 (1993).

    Google Scholar 

  19. Z.G. Li, P.J. Fagan and L. Liang, Chem. Phys. Lett. 207, 148 (1993).

    Article  ADS  Google Scholar 

  20. S.C. Tsang, P.J.F. Harris and M.L.H. Green, Nature 362, 520 (1993).

    Article  ADS  Google Scholar 

  21. C. H. Olk and J.P. Heremans, submitted.

    Google Scholar 

  22. D. Ugarte, Nature 359, 707 (1992)

    Article  ADS  Google Scholar 

  23. D. Ugarte, Nature 359, 707 (1992)

    Article  ADS  Google Scholar 

  24. W.A. de Heer and D. Ugarte, Chem. Phys. Lett. 207, 480 (1993).

    Article  ADS  Google Scholar 

  25. D.H. Robertson, D.W. Brenner and C.T. White, J. Phys. Chem. 96, 6133 (1992).

    Article  Google Scholar 

  26. S. Sawada and N. Hamada, Solid State Comm. 83, 917 (1992).

    Article  ADS  Google Scholar 

  27. F. Tuinstra and J.L. Koenig, J. Chem. Phys. 53, 1126 (1970).

    Article  ADS  Google Scholar 

  28. R.J. Nemanich and S.A. Solin, Phys. Rev. B 20, 392 (1979).

    Article  ADS  Google Scholar 

  29. S.A. Solin, Physica 99B, 443 (1980).

    Google Scholar 

  30. P. Lespade, R. Al-Jishi and M.S. Dresselhaus, Carbon 20, 427 (1982).

    Article  Google Scholar 

  31. D.S. Knight and W.B. White, J. Mater. Res. 4, 385 (1984).

    Article  ADS  Google Scholar 

  32. M.R. Pederson and J. Q. Broughton, Phys. Rev. Lett. 69, 2689 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ebbesen, T.W. (1994). Synthesis and Characterization of Carbon Nanotubes. In: Prassides, K. (eds) Physics and Chemistry of the Fullerenes. NATO ASI Series, vol 443. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0984-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0984-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4426-4

  • Online ISBN: 978-94-011-0984-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics