Skip to main content

Animal models for the study of genetic susceptibility to cancer

  • Chapter
The Genetics of Cancer

Part of the book series: Cancer Biology and Medicine ((CABM,volume 4))

Abstract

Many human cancers have a genetic component in their aetiology. In recent years, many specific genetic defects involved in cancer causation have been described. However, most remain to be discovered. The majority of known cancer genes have not yet been sufficiently characterized to be able to define their role in the multistage process of carcinogenesis. In order to both identify new cancer genes and to better define the function of known cancer genes, the use of appropriate model systems is crucial. While cell culture models are of value in this process, few exist in which the multistage process of carcinogenesis in specific tissues can be fully characterized. Thus, much attention is currently focused on developing rodent models of human cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burek JD, Hollander CV. Incidence patterns of spontaneous tumors in BN/Bi rats. J Natl Cancer Inst. 1977; 58: 99–105.

    PubMed  CAS  Google Scholar 

  2. Sass B, Rabstein LS, Madison R, Nims RM, Peters RL, Kelloff GJ. Incidence of spontaneous neoplasms in F344 rats throughout the natural life-span. J Natl Cancer Inst. 1975; 54: 1449–1456.

    PubMed  CAS  Google Scholar 

  3. Davis RK, Stevenson GT, Busch KA. Tumor incidence in normal Sprague-Dawley female rats. J Natl Cancer Inst. 1955; 15: 194–197.

    Google Scholar 

  4. Thompson SW, Huseby RA, Fox MA, Davis CL, Hunt RD. Spontaneous tumors in the Sprague-Dawley rat. J Natl Cancer Inst. 1961; 27: 1037–1057.

    PubMed  CAS  Google Scholar 

  5. Maekawa A, Odashima S. Spontaneous tumors in ACI/N rats. J Natl Cancer Inst. 1975; 55: 1437–1445.

    PubMed  CAS  Google Scholar 

  6. Dunning WF, Curtis MR. The respective roles of longevity and genetic specificity in the occurrence of spontaneous tumors in the hybrids between two inbred lines of rats. Cancer Res. 1945; 5: 62–81.

    Google Scholar 

  7. Crain RC. Spontaneous tumors in the Rochester strain of the Wistar rat. Am J Pathol. 1958; 34: 311–323.

    PubMed  CAS  Google Scholar 

  8. Gould MN, Wang B, Moore CJ. Modulation of mammary carcinogenesis by enhancer and suppressor genes. In: Colburn NJ, ed. Genes and signal transduction in multistage carcinogenesis. New York: Marcel Decker, Inc.; 1989: 19–38.

    Google Scholar 

  9. Chen B, Johanson L, Wiest JS, Anderson MW, You M. The second intron of the K-ras gene contains regulatory elements associated with mouse lung tumor susceptibility. Proc Natl Acad Sci USA. 1994; 91(4): 1589–1593.

    Article  PubMed  CAS  Google Scholar 

  10. Yeung RS, Buetow KH, Testa JR, Knudson AG Jr. Susceptibility to renal carcinoma in the Eker rat involves a tumor suppressor gene on chromosome 10. Proc Natl Acad Sci USA. 1993; 90(17): 8038–8042.

    Article  PubMed  CAS  Google Scholar 

  11. Buchmann A, Bauer-Hofmann R, Mahr J, Drinkwater NR, Luz A, Schwarz M. Mutational activation of the c-Ha-ras gene in liver tumors of different rodent strains: Correlation with susceptibility to hepatocarcinogenesis. Proc Natl Acad Sci USA. 1991; 88(3): 911–915.

    Article  PubMed  CAS  Google Scholar 

  12. Wiklund J, Rutledge J, Gorski J. A genetic model for the inheritance of pituitary tumor susceptibility in F344 rats. Endocrinology. 1981; 109: 1708–1714.

    Article  PubMed  CAS  Google Scholar 

  13. Medina D. Mammary tumors. In: Foster JH, Small JD, Fox JG, eds. The mouse in biomedical research, Vol 4. New York: Academic Press; 1982: 373–396.

    Google Scholar 

  14. Dunning WF, Curtis MR, Segaloff A. Strain differences in response to diethylstilbestrol and the induction of mammary gland and bladder cancer in the rat. Cancer Res. 1947; 7: 511–521.

    CAS  Google Scholar 

  15. Haag JD, Newton MA, Gould MN. Mammary carcinoma suppressor and susceptibility genes in the Wistar-Kyoto rat. Carcinogenesis. 1992; 13(10): 1933–1935.

    Article  PubMed  CAS  Google Scholar 

  16. Gould MN. Inheritance and site of expression of genes controlling susceptibility to mammary cancer in an inbred rat model. Cancer Res. 1986; 46: 1199–1202.

    PubMed  CAS  Google Scholar 

  17. Isaacs JT. Genetic control of resistance to chemically induced mammary adenocarcinogenesis in the rat. Cancer Res. 1986; 46: 3958–3963.

    PubMed  CAS  Google Scholar 

  18. Dietrich WF, Miller JC, Steen FG et al. A genetic map of the mouse with 4,006 simple sequence high polymorphisms. Nature Genet. 1994; 7 Suppl:220–245.

    Article  Google Scholar 

  19. Serikawa T, Kuramoto T, Hilbert P et al. Rat gene mapping using PCR-analyzed microsatellites. Genetics. 1992; 131: 701–721.

    PubMed  CAS  Google Scholar 

  20. Hsu L-C, Kennan WS, Shepel L et al. Genetic identification of Mcs-1, a rat mammary carcinoma suppressor gene. Cancer Res. 1994; 54: 2765–2770.

    PubMed  CAS  Google Scholar 

  21. Jacoby R, Hohman, Marshall et al. The use of microsatellite markers to map colon susceptibility genes in the mouse. Genomics. 1994; 22: 381–387.

    Article  PubMed  CAS  Google Scholar 

  22. Moser AR, Pitot HC, Dover WF. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science. 1990; 247: 322–341.

    Article  PubMed  CAS  Google Scholar 

  23. Su LK, Kinzler KW, Vogelstein B et al. A germline mutation of murine homolog of the APC gene causes multiple intestinal neoplasia. Science. 1992; 256: 668–670.

    Article  PubMed  CAS  Google Scholar 

  24. Moser AR, Dove WF, Roth KA, Gordon JI. The Min (multiple intestinal neoplasia) mutation: its effect on gut epithelial cell differentiation and interaction with a modifier system. J Cell Biol. 1992; 116: 1517–1526.

    Article  PubMed  CAS  Google Scholar 

  25. Dietrich WF, Lander ES, Smith JS et al. Genetic identification of Mom-1, a major modifier locus affecting min-induced intestinal neoplasia in the mouse. Cell. 1993; 75: 631–639.

    Article  PubMed  CAS  Google Scholar 

  26. Moser AR, Mattes EM, Dove WF, Lindstrom MJ, Haag JD, Gould MN. Min, a mutation in the murine Ape gene, predisposes to mammary carcinomas and focal alveolar hyperplasias. Proc Natl Acad Sci USA. 1993; 90: 8977–8981.

    Article  PubMed  CAS  Google Scholar 

  27. Fowlis DJ, Baimain A. Oncogenes and tumour suppressor genes in transgenic mouse models of neoplasia. Eur J Cancer. 1993; 29(4): 638–645.

    Article  Google Scholar 

  28. Bailleul B, Surani MA, White S et al. Skin hyperkeratosis and papilloma formation in transgenic mice expressing a ras oncogene from a suprabasal keratin promoter. Cell. 1990; 62: 697–708.

    Article  PubMed  CAS  Google Scholar 

  29. Chisari FV, Klopchin K, Moriyama T et al. Molecular pathogenesis of hepatocellular carcinoma in hepatitis B virus transgenic mice. Cell. 1989; 59: 1145–1156.

    Article  PubMed  CAS  Google Scholar 

  30. Hanahan D. Heritable formation of pancreatic β-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature. 1991; 315: 115–122.

    Article  Google Scholar 

  31. Sinn E, Muller W, Pattengale P, Tepler I, Wallace R, Leder P. Co-expression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice. Synergistic action of oncogenes in vivo. Cell. 1987; 49: 465–475.

    Article  PubMed  CAS  Google Scholar 

  32. Langdon WY, Harris AW, Cory S. Acceleration of B-lymphoid tumorigenesis in Eμ-myc transgenic mice by v-H-ras and v-raf but not v-abl. Oncogene Res. 1989; 4: 253–258.

    PubMed  CAS  Google Scholar 

  33. Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell. 1988; 54: 105–115.

    Article  PubMed  CAS  Google Scholar 

  34. Bouchard L, Lamarre L, Tremblay PJ, Jolicoeur P. Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV/c-neu oncogene. Cell. 1989; 57: 931–936.

    Article  PubMed  CAS  Google Scholar 

  35. Wang B, Kennan WS, Yasukawa-Barnes J, Lindstrom MJ, Gould MN. Carcinoma induction following direct in situ transfer of v-Ha-ras into rat mammary epithelial cells using replication-defective retrovirus vectors. Cancer Res. 1991; 51: 2642–2648.

    PubMed  CAS  Google Scholar 

  36. Wang B, Kennan WS, Yasukawa-Barnes J, Lindstrom MJ, Gould MN. Frequent induction of mammary carcinomas following neu oncogene transfer into in situ mammary epithelial cells of susceptible and resistant strains of rats. Cancer Res. 1991; 51: 5649–5654.

    PubMed  CAS  Google Scholar 

  37. Langdon WY, Harris AW, Cory S. Acceleration of B-lymphoid tumorigenesis in Eμ-myc transgenic mice by v-H-ras and v-ra/but not v-abl. Oncogene Res. 1989; 4: 253–258.

    PubMed  CAS  Google Scholar 

  38. Capecchi MR. The new mouse genetics: Altering the genome by gene targeting. Trends Genet. 1989; 5: 70–76.

    Article  PubMed  CAS  Google Scholar 

  39. Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K. Deletion of a DNA polymerase β gene segment in T cells using cell type-specific gene targeting. Science. 1994; 265: 103–106.

    Article  PubMed  CAS  Google Scholar 

  40. Donehower LA, Harvey M, Slagle BL et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 1992; 356: 215–221.

    Article  PubMed  CAS  Google Scholar 

  41. Harvey M, McArthur MJ, Montgomery CA Jr, Bradley A, Donehower LA. Genetic background alters the spectrum of tumors that develop in p53-deficient mice. FASEB J. 1993; 7(10): 938–943.

    PubMed  CAS  Google Scholar 

  42. Kemp CJ, Donehower LA, Bradley A, Balmain A. Reduction of p53 gene dosage does not increase initiation or promotion but enhances malignant progression of chemically induced skin tumors. Cell. 1993; 74(5): 813–822.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gould, M.N. (1995). Animal models for the study of genetic susceptibility to cancer. In: Ponder, B.A.J., Waring, M.J. (eds) The Genetics of Cancer. Cancer Biology and Medicine, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0677-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0677-1_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4294-9

  • Online ISBN: 978-94-011-0677-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics