Skip to main content

Colorectal cancer

  • Chapter
The Genetics of Cancer

Part of the book series: Cancer Biology and Medicine ((CABM,volume 4))

Abstract

Colorectal cancer is the third most common cancer worldwide (after breast and cervix in women and lung and stomach in men); it accounts for approximately 9% of all cancers1. Incidence varies approximately 20-fold around the world2,3. Highest rates are seen largely in the developed world — western Europe, North America, Australasia — with age-adjusted (world standard) incidence rates of 25 to 35 per 100 000 in the late 1980s. It is notable that rates in northern Italy (>30 per 100 000 for males) are now higher than in England and Wales (<20 per 100 000). The formerly low rates in Japan have now risen to a level comparable to those in England and Wales. The lowest rates are seen in India (1– 3 per 100 000)3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parkin DM, Läärä E, Muir CS. Estimates of the worldwide frequency of sixteen major cancers in 1980. Int J Cancer. 1988; 41: 184–197.

    Article  PubMed  CAS  Google Scholar 

  2. Muir C, Waterhouse J, Mack T et al. Cancer incidence in five continents. Vol 5, IARC Sci Publ 88. Lyon: International Agency for Research on Cancer; 1987.

    Google Scholar 

  3. Parkin DM, Muir CS, Whelan SL et al. Cancer incidence in five continents. Vol 6, IARC Sci Publ 120. Lyon: International Agency for Research on Cancer; 1992.

    Google Scholar 

  4. McMichael AJ, Potter JD. Reproduction, endogenous and exogenous sex hormones, and colon cancer: A review and hypothesis. J Natl Cancer Inst. 1980; 65: 1201–1207.

    PubMed  CAS  Google Scholar 

  5. Correa P, Haenszel W. The epidemiology of large bowel cancer. Adv Canc Res. 1978; 26: 2–141.

    Google Scholar 

  6. McMichael AJ, Potter JD. Host factors in carcinogenesis. Certain bile-acid profiles that selectively increase the risk of proximal colon cancer. J Natl Cancer Inst. 1985; 75: 185–191.

    PubMed  CAS  Google Scholar 

  7. Smith AH, Pearce NE, Joseph JG. Major colorectal cancer aetiological hypotheses do not explain mortality trends among Maori and non-Maori New Zealanders. Int J Epidemiol. 1985; 14: 79–85.

    Article  PubMed  CAS  Google Scholar 

  8. Schottenfeld D, Winawer SJ. Large intestine. In: Schottenfeld D, Fraumeni JF, eds. Cancer epidemiology and prevention. Philadelphia: WB Saunders Co; 1982: 703–727.

    Google Scholar 

  9. Haenszel W. Cancer mortality among the foreign born in the United States. J Natl Cancer Inst. 1961; 26: 37–132.

    PubMed  CAS  Google Scholar 

  10. Wynder EL, Shigematsu T. Environmental factors of cancer of the colon and rectum. Cancer. 1967; 20: 1520–1561.

    Article  PubMed  CAS  Google Scholar 

  11. McMichael AJ, McCall MG, Hartshorne JM, Woodings TL. Patterns of gastrointestinal cancer in European migrants to Australia: the role of dietary change. Int J Cancer. 1980; 25: 431–437.

    Article  PubMed  CAS  Google Scholar 

  12. McMichael AJ, Giles GG. Cancer in migrants to Australia: extending the descriptive epidemiological data. Cancer Res. 1988; 48: 751–756.

    PubMed  CAS  Google Scholar 

  13. Macklin MT. Inheritance of cancer of the stomach and large intestine in man. J Natl Cancer Inst. 1969; 24: 551–571.

    Google Scholar 

  14. Gardner EJ. A genetic and clinical study of intestinal polyposis, a predisposing factor for carcinoma of the colon and rectum. Am J Human Genet. 1951; 3: 167–176.

    CAS  Google Scholar 

  15. Veale AMO. Intestinal polyposis. Cambridge: Cambridge University Press; 1965.

    Google Scholar 

  16. Utsunomiya J, Lynch HT. Hereditary colorectal cancer. New York: Springer-Verlag; 1990.

    Google Scholar 

  17. Potter JD, Slattery ML, Bostick RM, Gapstur SM. Colon cancer: a review of the epidemiology. Epidemiol Rev. 1993; 15: 499–545.

    PubMed  CAS  Google Scholar 

  18. Steinmetz K, Potter J. Vegetables, fruit, and cancer. I. Epidemiology. Cancer Cause Cont. 1991; 2: 325–357.

    Article  CAS  Google Scholar 

  19. Steinmetz K, Potter J. Vegetables, fruit, and cancer. II. Mechanisms. Cancer Cause Cont. 1991; 2: 427–442.

    Article  CAS  Google Scholar 

  20. Haenszel W, Locke FB, Segi M. A case-control study of large bowel cancer in Japan. J Natl Cancer Inst. 1980; 64: 17–22.

    PubMed  CAS  Google Scholar 

  21. Miller AB, Howe GR, Jain M, et al. Food items and food groups as risk factors in a case-control study of diet and colorectal cancer. Int J Cancer. 1983; 32: 155–161.

    Article  PubMed  CAS  Google Scholar 

  22. Manousos O, Day NE, Trichopoulos D, et al. Diet and colorectal cancer: A case-control study in Greece. Int J Cancer. 1983; 32:1–5.

    Article  PubMed  CAS  Google Scholar 

  23. Macquart-Moulin G, Riboli E, Cornée J, et al. Case-control study on colorectal cancer and diet in Marseilles. Int J Cancer. 1986; 38: 183–191.

    Article  PubMed  CAS  Google Scholar 

  24. Steinmetz KA, Potter JD. Food group consumption and colon cancer in the Adelaide Case-control Study. I. Vegetables and fruit. Int J Cancer. 1993; 53: 711–719.

    Article  PubMed  CAS  Google Scholar 

  25. Kune S, Kune GM, Watson F. Case-control study of dietary etiologic factors: The Melbourne Colorectal Cancer Study. Nutr Cancer. 1987; 9: 21–42.

    Article  PubMed  CAS  Google Scholar 

  26. Tuyns AJ, Kaaks R, Haelterman M. Colorectal cancer and the consumption of foods: a case-control study in Belgium. Nutr Cancer. 1988; 11: 189–204.

    Article  PubMed  CAS  Google Scholar 

  27. Graham S, Marshall J, Haughey B et al. Dietary epidemiology of cancer of the colon in western New York. Am J Epidemiol. 1988; 128: 490–503.

    PubMed  CAS  Google Scholar 

  28. West DW, Slattery ML, Robison LM et al. Dietary intake and colon cancer: Sex and anatomic site-specific associations. Am J Epidemiol. 1989; 130: 883–894.

    PubMed  CAS  Google Scholar 

  29. Lee HP, Gourley L, Duffy SW et al. Colorectal cancer and diet in an Asian population — a case control study among Singapore Chinese. Int J Cancer. 1989; 43: 1007–1016.

    Article  PubMed  CAS  Google Scholar 

  30. Benito E, Stiggelbout A, Bosch FX et al. Nutritional factors in colorectal cancer risk: A case-control study in Majorca. Int J Cancer. 1991; 49: 161–167.

    Article  PubMed  CAS  Google Scholar 

  31. Peters RK, Pike MC, Garabrant D, Mack TM. Diet and colon cancer in Los Angeles County, California. Cancer Cause Cont. 1992; 3: 457–473.

    Article  CAS  Google Scholar 

  32. Zaridze D, Filipchenko V, Kustov V et al. Diet and colorectal cancer: results of two case-control studies in Russia. Eur J Cancer. 1993; 29A: 112–115.

    Article  Google Scholar 

  33. Steinmetz KA, Kushi LH, Bostick RM, Folsom AR, Potter JD. Vegetables, fruit and colon cancer in the Iowa Women’s Health Study. Am J Epidemiol. 1994; 139: 1–15.

    PubMed  CAS  Google Scholar 

  34. Howe GR, Benito E, Castellato, R et al. Dietary intake of fiber and decreased risk of cancers of the colon and rectum: evidence from the combined analysis of 13 case-control studies. J Natl Cancer Inst. 1992; 84: 1887–1896.

    Article  PubMed  CAS  Google Scholar 

  35. Tajima K, Tominga S. Dietary habits and gastro-intestinal cancers: A comparative case-control study of stomach and large intestinal cancers in Nagoya, Japan. Jpn J Cancer Res. 1985; 76: 705–716.

    PubMed  CAS  Google Scholar 

  36. LaVecchia C, Negri E, Decarli A et al. A case-control study of diet and colorectal cancer in northern Italy. Int J Cancer. 1988; 41: 492–498.

    Article  PubMed  Google Scholar 

  37. Steinmetz KA, Potter JD. Food group consumption and colon cancer in the Adelaide Case-control Study. II. Meat, poultry, seafood, dairy foods, and eggs. Int J Cancer. 1993; 53: 720–727.

    Article  PubMed  CAS  Google Scholar 

  38. Benito E, Obrador A, Stiggelbout A et al. A population-based case-control study of colorectal cancer in Majorca. I. Dietary factors. Int J Cancer. 1990; 45: 69–76.

    Article  PubMed  CAS  Google Scholar 

  39. Willett WC, Stampfer MJ, Colditz GA et al. Relation of meat fat and fiber intake to the risk of colon cancer in a prospective study among women. N Engl J Med. 1990; 323: 1664–1672.

    Article  PubMed  CAS  Google Scholar 

  40. Bostick RM, Potter JD, Kushi LH et al. Sugar, meat, and fat intake, and non-dietary risk factors for colon cancer incidence in Iowa women (United States). Cancer Cause Cont. 1994; 5: 38–52.

    Article  CAS  Google Scholar 

  41. Gerhardsson de Verdier M, Hagman U, Peters RK et al. Meat cooking methods and colorectal cancer: a case-referent study in Stockholm. Int J Cancer. 1991; 49: 520–525.

    Article  PubMed  CAS  Google Scholar 

  42. Bostick RM, Potter JD, Sellers TA et al. Relation of calcium, vitamin D, and dairy food intake to incidence of colon cancer among older women. Am J Epidemiol. 1993; 137: 1302–1317.

    PubMed  CAS  Google Scholar 

  43. Newmark HL, Wargovich MJ, Bruce WR. Colon cancer and dietary fat, phosphate, and calcium: a hypothesis. J Natl Cancer Inst. 1984; 72: 1323–1325.

    PubMed  CAS  Google Scholar 

  44. Garabrant DH, Peters JM, Mack TM, Bernstein L. Job activity and colon cancer risk. Am J Epidemiol. 1984; 119: 1005–1014.

    PubMed  CAS  Google Scholar 

  45. Thun MJ, Namboodiri MM, Heath CW. Aspirin use and reduced risk of fatal colon cancer. N Engl J Med. 1991; 325: 1593–1596.

    Article  PubMed  CAS  Google Scholar 

  46. Rosenberg L, Palmer JR, Zauber AG et al. A hypothesis: nonsterodial anti-inflammatory drugs reduce the incidence of large-bowel cancer. J Natl Cancer Inst. 1991; 83: 355–358.

    Article  PubMed  CAS  Google Scholar 

  47. Stocks P. Cancer incidence in North Wales and Liverpool region in relation to habits and environment. 35th Annual Report, Suppl to Part 2. London: British Empire Cancer Campaign; 1957: 1–127.

    Google Scholar 

  48. Lovett E. Family studies in cancer of the colon and rectum. Br J Surg. 1976; 63: 13–18.

    Article  PubMed  CAS  Google Scholar 

  49. Bale SJ, Chakravarti A, Strong LC. Aggregation of colon cancer in family data. Genet Epidemiol. 1984; 1: 53–61.

    Article  PubMed  CAS  Google Scholar 

  50. Burt RW, Bishop DT, Cannon LA et al. Dominant inheritance of adenomatous colonie polyps and colorectal cancer. N Engl J Med. 1985; 312: 1540–1544.

    Article  PubMed  CAS  Google Scholar 

  51. Schildkraut JM, Thompson WD. Relationship of epithelial ovarian cancer to other malignancies within families. Genet Epidemiol. 1988; 5: 355–367.

    Article  PubMed  CAS  Google Scholar 

  52. Cramer DW, Hutchinson GB, Welch WR et al. Determinants of ovarian cancer risk. I. Reproductive experiences and family history. J Natl Cancer Inst. 1983; 71: 711–716.

    PubMed  CAS  Google Scholar 

  53. Andrieu N, Calvel F, Auquier A, et al. Association between breast cancer and family malignancies. Eur J Cancer. 1991; 27: 224–228.

    Google Scholar 

  54. Sellers TA, Kushi L, Potter JD. Can dietary intake patterns account for the familial aggregation of disease? Evidence from adult siblings living apart. Genet Epidemiol. 1991; 8: 105–112.

    Article  PubMed  CAS  Google Scholar 

  55. Lynch PM, Lynch HT. Colon cancer genetics. New York: Van Nostrand Rheinhold; 1985.

    Google Scholar 

  56. Lynch HT, Lynch JF, Cristofaro G. Genetic epidemiology of colon cancer. In: Lynch HT, Hirayama T, eds. Genetic epidemiology of cancer. Boca Raton, FL: CRC Press; 1989: 251–277.

    Google Scholar 

  57. Leppert M, Dobbs M, Scambler P et al. The gene for familial polyposis coli maps to the long arm of chromosome 5. Science. 1987; 238: 1411–1413.

    Article  PubMed  CAS  Google Scholar 

  58. Bodmer WF, Bailey CJ, Bodmer J et al. Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature (London). 1987; 328: 614–616.

    Article  CAS  Google Scholar 

  59. Leppert M, Burt R, Hughes J et al. Genetic analysis of an inherited predisposition to colonic cancer in a family with a variable number of adenamatous polyps. N Engl J Med. 1990; 32: 904–908.

    Article  Google Scholar 

  60. Nishisho I, Nakamura Y, Miyoshi Y et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science. 1991; 253: 665–669.

    Article  PubMed  CAS  Google Scholar 

  61. Groden J, Thliveris A, Samowitz W et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell. 1991; 66: 589–600.

    Article  PubMed  CAS  Google Scholar 

  62. Kinzler K, Nilbert M, Su L-K et al. Identification of FAP locus genes from chromosome 5q21. Science. 1991; 253: 661–665.

    Article  PubMed  CAS  Google Scholar 

  63. Joslyn G, Carlson M, Thliveris A et al. Identification of deletion mutations and three new genes at the familial polyposis locus. Cell. 1991; 66: 601–613.

    Article  PubMed  CAS  Google Scholar 

  64. Powell, SM, Nathan Z, Beazer-Barclay Y et al. APC mutations occur early during colorectal tumorigenesis. Nature (London). 1992; 359: 253–257.

    Article  Google Scholar 

  65. Tamura G, Maesawa C, Suzuki Y et al. Mutations of the APC gene occur during early stages of gastric adenoma development. Cancer Res. 1994; 54: 1149–1151.

    PubMed  CAS  Google Scholar 

  66. Hosoe S, Ueno K, Shigedo Y et al. A frequent deletion of chromosome 5q21 in advanced small cell and non-small cell carcinoma of the lung. Cancer Res. 1994; 54: 1787–1790.

    PubMed  CAS  Google Scholar 

  67. Horii A, Nakatsuru S, Miyoshi Y et al. Frequent somatic mutations of the APC gene in human pancreatic cancer. Cancer Res. 1992; 52: 6696–6698.

    PubMed  CAS  Google Scholar 

  68. Su LK, Vogelstein B, Kinzler KW. Association of the APC tumor suppressor protein with catenins. Science. 1993; 262: 1734–1737.

    Article  PubMed  CAS  Google Scholar 

  69. Rubinfeld B, Souza B, Albert I et al. Association of the apc gene product with β-catenin. Science. 1993; 262: 1731–1734.

    Article  PubMed  CAS  Google Scholar 

  70. Peifer M. Cancer, catenins, and cuticle pattern: a complex connection. Science. 1993; 262: 1667–1668.

    Article  PubMed  CAS  Google Scholar 

  71. Siegfried E, Wilder E, Perrimon N. Components of wingless signalling in Drosophila. Nature (London). 1994; 367: 76–80.

    Article  CAS  Google Scholar 

  72. Nordemeer J, Klingensmith J, Perrimon N, Nusse R. dishevelled and armidillo act in the wingless signalling pathway in Drosophila. Nature (London). 1994; 367: 80–83.

    Article  Google Scholar 

  73. Peltomaki P, Aaltonen LA, Sistonen P et al. Genetic mapping of a locus predisposing to human colorectal cancer. Science. 1993; 260: 810–812.

    Article  PubMed  CAS  Google Scholar 

  74. Aaltonen LA, Peltomaki P, Leach FS et al. Clues to the pathogenesis of familial colorectal cancer. Science. 1993; 260: 812–816.

    Article  PubMed  CAS  Google Scholar 

  75. Thibodeau SN, Bren G, Schaid D. Microsatellite instability in cancer of the proximal colon. Science. 1993; 260: 816–819.

    Article  PubMed  CAS  Google Scholar 

  76. Fishel R, Lescoe MK, Rao MRS et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell. 1993; 75: 1027–1038.

    Article  PubMed  CAS  Google Scholar 

  77. Leach FS, Nicolaides NC, Papadopoulos N et al. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell. 1993; 75: 1215–1226.

    Article  PubMed  CAS  Google Scholar 

  78. Parsons, R, Li G-M, Longley MJ et al. Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell. 1993; 75: 1227–1236.

    Article  PubMed  CAS  Google Scholar 

  79. Ionov Y, Peinado MA, Malkbosyan S et al. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature (London). 1993; 363: 558–561.

    Article  CAS  Google Scholar 

  80. Strand M, Prolla TA, Liskay PM, Potes T. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature (London). 1993; 365: 274–276.

    Article  CAS  Google Scholar 

  81. Lindblom A, Tannergard P, Werelius B, Nordenskjold M. Genetic mapping of a second locus predisposing to hereditary non-polyposis colon cancer. Nature Genet. 1993; 5: 279–282.

    Article  PubMed  CAS  Google Scholar 

  82. Papadopoulos N, Nicolaides NC, Wei Y-F et al. Mutation of a mutL homolog in hereditary colon cancer. Science. 1994; 263: 1625–1629.

    Article  PubMed  CAS  Google Scholar 

  83. Bronner CE, Baker SM, Morrison PT et al. Mutation in the DNA mismatch repair gene homologue hMLHl is associated with hereditary non-polyposis colon cancer. Nature (London). 1994; 368: 258–261.

    Article  CAS  Google Scholar 

  84. Honchel R, Hailing KC, Schaid DJ et al. Microsatellite instability in Muir-Torre syndrome. Cancer Res. 1994; 54: 1159–1163.

    PubMed  CAS  Google Scholar 

  85. Hall NR, Murday VA, Chapman P et al. Genetic linkage in Muir-Torre syndrome to the same chromosomal region as cancer family syndrome. Eur J Cancer. 1994; 30A: 180–182.

    Article  PubMed  CAS  Google Scholar 

  86. Sugimura T, Sato S. Mutagens-carcinogens in foods. Cancer Res. 1983; 43: 2415s–21s.

    PubMed  CAS  Google Scholar 

  87. Jägerstad M, Reuterswärd AL, Grivas S et al. Effects of meat composition and cooking conditions on the formation of mutagenic imidazoquinoxalines (MeIQx and its methyl derivatives). In: Hayashi Y, Nagao M, Sugimura T et al., eds. Diet, nutrition and cancer. Tokyo, Japan, 1985. Tokyo, Japan: Japan Scientific Societies Press; 1986: 87–96.

    Google Scholar 

  88. Ohgaki H, Hasegawa H, Kato T et al. Carcinogenicities in mice and rats of IQ, MeIQ, and MeIQx. In: Hayashi Y, Nagao M, Sugimura T et al., eds. Diet, nutrition and cancer. Tokyo, Japan, 1985. Tokyo, Japan: Japan Scientific Societies Press; 1986: 97–105.

    Google Scholar 

  89. Turesky, RJ, Lang, N, Butler, MA et al. Metabolic activation of carcinogenic heterocyclic aromatic amines by human liver and colon. Carcinogenesis. 1991; 12: 1417–1422.

    Article  Google Scholar 

  90. Kadlubar FF, Butler MA, Kaderlik KR et al. Polymorphisms for aromatic amine metabolism in humans: relevance for human carcinogenesis. Environ Health Persp. 1992; 98: 69–74.

    Article  CAS  Google Scholar 

  91. Baker S, Fearon E, Nigro J et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science. 1989; 244: 217–222.

    Article  PubMed  CAS  Google Scholar 

  92. Vogelstein B, Fearon E, Kern S et al. Allelotype of colorectal carcinomas. Science. 1989; 244: 207–212.

    Article  PubMed  CAS  Google Scholar 

  93. Kinzler K, Nilbert M, Vogelstein B et al. Identification of a gene located at chromosome 5q21 that is mutated in colorectal cancers. Science. 1991; 251: 1366–1370.

    Article  PubMed  CAS  Google Scholar 

  94. Fearon E, Cho K, Nigro J et al. Identification of a chromosome 18q gene that is altered in colorectal cancers. Science. 1990; 247: 49–56.

    Article  PubMed  CAS  Google Scholar 

  95. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990; 61: 759–767.

    Article  PubMed  CAS  Google Scholar 

  96. Pretlow TB, Basitus TA, Fulton NC et al. K-ras mutations in putative preneoplastic lesions in human colon. J Natl Cancer Inst. 1993; 85: 2004–2007.

    Article  PubMed  CAS  Google Scholar 

  97. Feinberg A, Vogelstein B. Hypomethylation of ras oncogenes in primary human cancers. Biochem Biophys Res Commun. 1983; 111: 47–54.

    Article  PubMed  CAS  Google Scholar 

  98. Hoffman RM. Altered methionine metabolism, DNA methylation and oncogene expression in carcinogenesis. Biochim Biophys Acta. 1984; 738: 49–87.

    PubMed  CAS  Google Scholar 

  99. El-Deiry WS, Nelkin BD, Celano P et al. High expression of the DNA methyltransferase gene characterizes human neoplastic cells and progression stages of colon cancer. Proc Natl Acad Sci. 1991; 88: 3470–3474.

    Article  PubMed  CAS  Google Scholar 

  100. Ellis R, DeFeo D, Shih T et al. The p21 src genes of Harvey and Kirsten sarcoma viruses originate from divergent members of a family of normal vertebrate genes. Nature (London). 1981; 292: 506–511.

    Article  CAS  Google Scholar 

  101. Reddy E, Reynolds R, Santos E, Barbacid M. A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature (London). 1982; 300: 149–153.

    Article  CAS  Google Scholar 

  102. Tabin C, Bardley S, Bargmann C et al. Mechanism of activation of a human oncogene. Nature (London). 1982; 300: 143–149.

    Article  CAS  Google Scholar 

  103. Taparowsky E, Suard Y, Fasano O et al. Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change. Nature (London). 1982; 300: 762–765.

    Article  CAS  Google Scholar 

  104. Bos JL, Fearon ER, Hamilton SR et al. Prevalence of ras gene mutations in human colorectal cancers. Nature (London). 1987; 327: 293–297.

    Article  CAS  Google Scholar 

  105. Bos JL. ras oncogenes in human cancer: a review. Cancer Res. 1989; 49: 4682–4689.

    PubMed  CAS  Google Scholar 

  106. Almoquera C, Shibata D, Forrester K et al. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell. 1988; 53: 549–554.

    Article  Google Scholar 

  107. Smit VTHBM, Boot AJM, Smits AMM et al. K-ras codon 12 mutations occur very frequently in pancreatic adenocarcinomas. Nucleic Acids Res. 1988; 16: 7773–7787.

    Article  PubMed  CAS  Google Scholar 

  108. Rodenhuis S, Van De Wetering ML, Mooi WJ et al. Mutational activation of the K-ras oncogene, a possible pathogenetic factor in adenocarcinoma of the lung. N Engl J Med. 1987; 317: 929–935.

    Article  PubMed  CAS  Google Scholar 

  109. Shi Y, Zou M, Schmidt H et al. High rates of ras codon 61 mutation in thyroid tumors in an iodide-deficient area. Cancer Res. 1991; 51: 2690–2693.

    PubMed  CAS  Google Scholar 

  110. Haubruck H, McCormick F. Ras p21: effects and regulation. Biochim Biophys Acta. 1991; 1072: 215–229.

    PubMed  CAS  Google Scholar 

  111. Boguski MS, McCormick F. Proteins regulating Ras and its relatives. Nature (London). 1993; 366: 643–654.

    Article  CAS  Google Scholar 

  112. Buriner GC, Rabinovitch PS, Loeb LA. Frequency and spectrum of c-Ki-ras mutations in human sporadic colon carcinoma, carcinomas arising in ulcerative colitis, and pancreatic adenocarcinoma. Environ Health Perspect. 1991; 93: 27–31.

    Article  Google Scholar 

  113. Fujimori T, Satonaka K, Yamamura-Idei Y et al. Non-involvement of ras mutations in flat colorectal adenomas and carcinomas. Int J Cancer. 1994; 57: 51–55.

    Article  PubMed  CAS  Google Scholar 

  114. Höhne MW, Halatsch M-E, Kahl GF, Weinel RJ. Frequent loss of expression of the potential tumor suppressor gene DCC in ductal pancreatic adenocarcinoma. Cancer Res. 1992; 52: 2616–2619.

    PubMed  Google Scholar 

  115. Uchino S, Tsuda H, Noguchi M et al. Frequent loss of heterozygosity of the DCC locus in gastric cancer. Cancer Res. 1992; 52: 3099–3102.

    PubMed  CAS  Google Scholar 

  116. Vogelstein B. A deadly inheritance. Nature (London). 1990; 348: 681–682.

    Article  CAS  Google Scholar 

  117. Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science. 1991; 253: 49–53.

    Article  PubMed  CAS  Google Scholar 

  118. Farmer G, Bargonetti J, Zhu H et al. Wild-type p53 activates transcription in vitro. Nature (London). 1992; 358: 83–86.

    Article  CAS  Google Scholar 

  119. Kastan MB, Onyekwere O, Sidransky D et. al. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 1991; 51: 6304–6311.

    PubMed  CAS  Google Scholar 

  120. Levine AJ, Momand J, Finlay CA. The p53 tumour suppressor gene. Nature (London). 1991; 351: 453–456.

    Article  CAS  Google Scholar 

  121. Malkin D, Li FP, Strong LC et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990; 250: 1233–1238.

    Article  PubMed  CAS  Google Scholar 

  122. Hill MJ, Morson BC, Bussey HJR. Aetiology of adenoma-carcinoma sequence in large bowel. Lancet. 1978; 1: 245–247.

    Article  PubMed  CAS  Google Scholar 

  123. Bird RP. Observation and quantification of aberrant crypts in the murine colon treated with a colon carcinogen; preliminary findings. Cancer Lett. 1987; 37: 147–151.

    Article  PubMed  CAS  Google Scholar 

  124. Tudek B, Bird RP, Bruce WR. Foci of aberrant crypts in the colons of mice and rats exposed to carcinogens associated with foods. Cancer Res. 1989; 49: 1236–1240.

    PubMed  CAS  Google Scholar 

  125. Roncucci L, Medline A, Bruce WR. Classification of aberrant crypt foci and microadenomas in human colon. Cancer Epidemiol Biol Prev. 1991;l:57–60.

    Google Scholar 

  126. Pretlow TP, Barrow BJ, Ashton WS et al. Aberrant crypts: putative preneoplastic foci in human colonic mucosa. Cancer Res. 1991; 51: 1564–1567.

    PubMed  CAS  Google Scholar 

  127. Roncucci L, Stamp D, Medline A et al. Identification and quantification of aberrant crypt foci and microadenomas in the human colon. Hum Pathol. 1991; 22: 287–294.

    Article  PubMed  CAS  Google Scholar 

  128. Corpet DE, Stamp D, Medline A et al. Promotion of colonic microadenoma growth in mice and rats fed cooked sugar or cooked casein and fat. Cancer Res. 1990; 50: 6955–6958.

    PubMed  CAS  Google Scholar 

  129. Zhang X-M, Stamp D, Minkin S et al. Promotion of aberrant crypt foci and cancer in rat colon by thermolyzed protein. J Natl Cancer Inst. 1992; 84: 1026–1030.

    Article  PubMed  CAS  Google Scholar 

  130. Pretlow TP, O’Riordan MA, Somich G A et al. Aberrant crypts correlate with tumor incidence in F344 rats treated with azoxymethane and phytate. Carcinogenesis. 1992; 13: 1509–1512.

    Article  PubMed  CAS  Google Scholar 

  131. Moser AR, Pitot HC, Dove WF. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science. 1990; 247: 322–324.

    Article  PubMed  CAS  Google Scholar 

  132. Su LK, Kinzler KW, Vogelstein B et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science. 1992; 256: 668–670.

    Article  PubMed  CAS  Google Scholar 

  133. Moser AR, Dove WF, Roth KA, Gordon JI. The Min (multiple intestinal neoplasia) mutation: its effect on gut epithelial cell differentiation and interaction with a modifier system. J Cell Biol. 1992; 116: 1517–1526.

    Article  PubMed  CAS  Google Scholar 

  134. Dietrich WF, Lander ES, Smith JS et al. Genetic identification of MOM-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell. 1993; 75: 631–639.

    Article  PubMed  CAS  Google Scholar 

  135. Hill MJ, Aries VC. Faecal steroid composition and its relationship to cancer of the large bowel. JPath. 1971; 104: 129–139.

    Article  CAS  Google Scholar 

  136. Stephen A, Cummings J. Mechanism of action of dietary fibre in the human colon. Nature (London). 1980; 284: 283–284.

    Article  CAS  Google Scholar 

  137. Cummings J. Fermentation in the human large intestine: evidence and implications for health. Lancet. 1983; 1: 1206–1209.

    Article  PubMed  CAS  Google Scholar 

  138. Potter JD, McMichael AJ. Diet and cancer of the colon and rectum: A case-control study. J Natl Cancer Inst. 1986; 76: 557–569.

    PubMed  CAS  Google Scholar 

  139. Wattenberg, LW. Inhibition of chemical carcinogenesis. J Natl Cancer Inst. 1987; 60: 11–18.

    Google Scholar 

  140. Wattenberg LW. Inhibition of carcinogenic effects of polycyclic hydrocarbons by benzyl isothiocyanate and related compounds. J Natl Cancer Inst. 1977; 58: 195–198.

    Google Scholar 

  141. Wargovich MJ, Eng VWS, Newmark H. Calcium inhibits the damaging and compensatory proliferative effects of fatty acids on mouse colon epithelium. Cancer Lett. 1984; 23: 253–258.

    Article  PubMed  CAS  Google Scholar 

  142. Bird RP, Schneider R, Stamp D et al. Effect of dietary calcium and cholic acid on the proliferative indices of murine colonic epithelium. Carcinogenesis. 1986; 7: 657–661.

    Article  Google Scholar 

  143. Wargovich MJ, Eng WWS, Newmark HL et al. Calcium ameliorates the toxic effect of deoxy-cholic acid on colonic epithelium. Carcinogenesis. 1983; 4: 1205–1207.

    Article  PubMed  CAS  Google Scholar 

  144. Wargovich MJ, Isbell G, Shabot M et al. Calcium supplementation decreases rectal epithelial cell proliferation in subjects with sporadic adenoma. Gastroenterology 1992; 103: 92–97.

    PubMed  CAS  Google Scholar 

  145. Bostick RM, Fosdick L, Wood JR et al. Calcium normalizes distribution of proliferating cells but does not affect proliferation rate in colorectal mucosa of sporadic adenoma patients: A randomized, double-blind, placebo-controlled clinical trial. JNCI. 1995 (in press).

    Google Scholar 

  146. Bostick RM, Potter JD, Fosdick L et al. Calcium and colorectal epithelial cell proliferation: Findings from a preliminary randomized double-blind placebo-controlled clinical trial. J Natl Cancer Inst. 1993; 85: 132–141.

    Article  PubMed  CAS  Google Scholar 

  147. Hennings J, Michael D, Chang C et al. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell. 1980; 19: 245–254.

    Article  PubMed  CAS  Google Scholar 

  148. Yuspa SH, Koehler B, Kulesz-Martin M et al. Clonal growth of mouse epidermal cells in medium with reduced calcium concentration. J Invest Dermatol. 1981; 76: 144–146.

    Article  PubMed  CAS  Google Scholar 

  149. Lechner JF, Haugen A, McClendon IA et al. Clonal growth of normal adult human bronchial epithelial cells in a serum-free medium. In Vitro. 1982; 18: 633–642.

    Article  PubMed  CAS  Google Scholar 

  150. Yu DTY, Clements J, Pearson CM. Effect of sport stress on lymphocyte transformation and antibody formation. Clin Exp Immunol. 1977; 28: 326–331.

    PubMed  CAS  Google Scholar 

  151. Mackinnon LT. Exercise and natural killer cells. What is the relationship? Sports Med. 1989; 7: 141–149.

    Article  PubMed  CAS  Google Scholar 

  152. Shephard RJ. Physical activity and cancer. Int J Sports Med. 1990; 11: 413–420.

    Article  PubMed  CAS  Google Scholar 

  153. Simon HB. The immunology of exercise: a brief review. JAMA. 1984; 252: 2735–2738.

    Article  PubMed  CAS  Google Scholar 

  154. Ravikumar T, Rodrick M, Steele G et al. Interleukin generation in experimental colon cancer of rats: effects of tumor growth and tumor therapy. J Natl Cancer Inst. 1985; 74: 893–898.

    PubMed  CAS  Google Scholar 

  155. Cumming DC, Vickovic MM, Wall SR et al. The effect of acute exercise on pulsatile release of luteinizing hormone in women runners. Am J Obstet Gynecol. 1985; 153: 482–485.

    PubMed  CAS  Google Scholar 

  156. Bonen A, Ling WH, Maclntyre KP et al. Effects of exercise on the serum concentrations of FSH, LH, progesterone and estradiol. Eur J Appl Physiol. 1979; 42: 15–23.

    Article  CAS  Google Scholar 

  157. Jurkowski JE, Joanes NL, Walker WC et al. Ovarian hormonal responses to exercise. Med Sci Sports Exerc. 1981; 13: 109–114.

    Google Scholar 

  158. McMichael AJ, Potter JD. Do intrinsic sex differences in lower alimentary tract physiology influence the sex-specific risks for bowel cancer and other biliary and intestinal diseases? Am J Epidemiol. 1983; 118: 620–627.

    PubMed  CAS  Google Scholar 

  159. Stephen AM, Wiggins HS, Englyst HN et al. The effect of age, sex and level of intake of dietary fibre from wheat on large-bowel function in thirty healthy subjects. Br J Nutr. 1986; 56: 349–361.

    Article  PubMed  CAS  Google Scholar 

  160. Lampe JW, Slavin JL, Potter JD. Sex differences in colonic function: a randomized trial. Gut. 1993; 34: 531–536.

    Article  PubMed  CAS  Google Scholar 

  161. Kaplan L, Spindel E, Isselbacher K, Chin W. Tissue-specific expression of the rat galanin gene. Proc Natl Acad Sci. 1988; 85: 1065–1069.

    Article  PubMed  CAS  Google Scholar 

  162. Lund PK. Nutritional control of gastrointestinal hormone gene expression. In: Berdainer CD, Hargrove JL, eds. Nutrition and gene expression. Boca Raton, FL: CRC Press; 1993: 91–116.

    Google Scholar 

  163. McMichael AJ, Potter JD. Dietary influences upon colon carcinogenesis. In: Hayashi Y, Nagao M, Sugimura T et al., eds. Diet, nutrition and cancer. Tokyo, Japan, 1985. Tokyo, Japan: Japan Scientific Societies Press; 1986: 275–290.

    Google Scholar 

  164. Potter JD. Large bowel cancer: epidemiology and biology. Ergeb Gastroenterol. 1989; 24: 137–140.

    CAS  Google Scholar 

  165. Potter JD. Colon cancer: reconciling the epidemiology, physiology, and molecular biology. JAMA. 1992; 268: 1573–1577.

    Article  PubMed  CAS  Google Scholar 

  166. Anzano MA, Riemann D, Pritchett W, et al. Growth factor production by human colon carcinoma cell lines. Cancer Res. 1989; 49: 2898–2904.

    PubMed  CAS  Google Scholar 

  167. Mukaida H, Hirabayashi N et al. Significance of freshly cultured fibroblasts from different tissue in promoting cancer cell growth. Int J Cancer. 1991; 48: 423–427.

    Article  PubMed  CAS  Google Scholar 

  168. Ross JA, Potter JD, Severson RK. Platelet-derived growth factor and the epidemiology of colorectal cancer: a hypothesis. Eur J Canc Prev. 1993; 2: 197–210.

    Article  CAS  Google Scholar 

  169. Yunis JJ, Soreng AL. Constitutive fragile sites and cancer. Science. 1984; 226: 1199–1204.

    Article  PubMed  CAS  Google Scholar 

  170. Giovanucci E, Stampfer MJ, Colditz GA et al. Folate, methionine, and alcohol intake and risk of colorectal adenoma. J Natl Cancer Inst. 1993; 85: 875–884.

    Article  Google Scholar 

  171. Morotomi M, Guillem J, LoGerfo P, Weinstein IB. Production of diacylglycerol, an activator of protein kinase C, by human intestinal microflora. Cancer Res. 1990; 50: 3595–3599.

    PubMed  CAS  Google Scholar 

  172. Guillem JG, Weinstein IB. The role of protein kinase C in colon neoplasia. In: Herrera L, ed. Familial adenomatous polyposis. New York: Alan R. Liss; 1990: 325–332.

    Google Scholar 

  173. Rosenthal MD. Fatty acid metabolism of isolated mammalian cells. Prog Lipid Res. 1987; 26: 87.

    Article  PubMed  CAS  Google Scholar 

  174. Nicosia S, Patrono C. Eicosanoid biosynthesis and action: novel opportunities for pharmacological intervention. FASEB J. 1989; 3: 1941.

    PubMed  CAS  Google Scholar 

  175. Rutten AAJJL, Flake HE. Influence of high dietary levels of fat on rat hepatic phase I and II biotransformation enzyme activities. Nutr Rep Int. 1987; 36: 109.

    CAS  Google Scholar 

  176. Kim HJ, Choi ES, Wade AE. Effect of dietary fat on the induction of hepatic microsomal cytochrome P450 isozymes by phenobarbital. Biochem Pharmacol. 1990; 39: 1423.

    Article  PubMed  CAS  Google Scholar 

  177. Guillem JG, Hsieh LL, O’Toole KM et al. Changes in expression of oncogenes and endogenous retroviral-like sequences during colon carcinogenesis. Cancer Res. 1988; 48: 3964.

    PubMed  CAS  Google Scholar 

  178. Castro EC. Nutrient effects on DNA and chromatin structure. Annu Rev Nutr. 1987; 7: 407.

    Article  PubMed  CAS  Google Scholar 

  179. Beland FA, Kadlubar FF. Formation and persistence of arylamine DNA adduets in vivo. Environ Health Perspect. 1985; 62: 19–30.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Potter, J.D., Sellers, T.A., Rich, S.S. (1995). Colorectal cancer. In: Ponder, B.A.J., Waring, M.J. (eds) The Genetics of Cancer. Cancer Biology and Medicine, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0677-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0677-1_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4294-9

  • Online ISBN: 978-94-011-0677-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics